8 research outputs found

    Spent mushroom compost (SMC) as a source for biogas production in Iran

    No full text
    202001 bcmaVersion of RecordPublishe

    Comprehensive Review of Deep Reinforcement Learning Methods and Applications in Economics

    No full text
    The popularity of deep reinforcement learning (DRL) applications in economics has increased exponentially. DRL, through a wide range of capabilities from reinforcement learning (RL) to deep learning (DL), offers vast opportunities for handling sophisticated dynamic economics systems. DRL is characterized by scalability with the potential to be applied to high-dimensional problems in conjunction with noisy and nonlinear patterns of economic data. In this paper, we initially consider a brief review of DL, RL, and deep RL methods in diverse applications in economics, providing an in-depth insight into the state-of-the-art. Furthermore, the architecture of DRL applied to economic applications is investigated in order to highlight the complexity, robustness, accuracy, performance, computational tasks, risk constraints, and profitability. The survey results indicate that DRL can provide better performance and higher efficiency as compared to the traditional algorithms while facing real economic problems in the presence of risk parameters and the ever-increasing uncertainties

    Comprehensive review of deep reinforcement learning methods and applications in economics

    No full text
    The popularity of deep reinforcement learning (DRL) methods in economics have been exponentially increased. DRL, through a wide range of capabilities from reinforcement learning (RL) to deep learning (DL), offers vast opportunities for handling sophisticated economics dynamic systems. DRL is characterized by scalability with the potential to be applied to high-dimensional problems in conjunction with noisy and nonlinear patterns of economic data. In this paper, we initially consider a brief review of DL, RL, and deep RL methods in diverse applications in economics, providing an in-depth insight into state of the art. Furthermore, the architecture of DRL applied to economic applications is investigated in order to highlight the complexity, robustness, accuracy, performance, computational tasks, risk constraints, and profitability. The survey results indicate that DRL can provide better performance and higher efficiency as compared to the traditional algorithms while facing real economic problems at the presence of risk parameters and the ever-increasing uncertainties

    Technological progresses in modern sustainable greenhouses cultivation as the path towards precision agriculture

    No full text
    corecore