323 research outputs found
An exploratory search for z ≳ 6 quasars in the UKIDSS early data release
We conducted an exploratory search for quasars at z ~ 6-8, using the Early Data Release (EDR) from the United Kingdom Infrared Deep Sky Survey (UKIDSS) cross-matched to panoramic optical imagery. High-redshift quasar candidates are chosen using multi-color selection in i, z, Y, J, H, and K bands. After removal of apparent instrumental artifacts, our candidate list consisted of 34 objects. We further refined this list with deeper imaging in the optical for ten of our candidates. Twenty-five candidates were followed up spectroscopically in the near-infrared and in the optical. We confirmed 25 of our spectra as very low-mass main-sequence stars or brown dwarfs, which were indeed expected as the main contaminants of this exploratory search. The lack of quasar detection is not surprising: the estimated probability of finding a single z > 6 quasar down to the limit of UKIDSS in 27.3 deg^2 of the EDR is <5%. We find that the most important limiting factor in this work is the depth of the available optical data. Experience gained in this pilot project can help refine high-redshift quasar selection criteria for subsequent UKIDSS data releases
COSMOGRAIL: the COSmological MOnitoring of GRAvItational Lenses VII. Time delays and the Hubble constant from WFI J2033-4723
Gravitationally lensed quasars can be used to map the mass distribution in
lensing galaxies and to estimate the Hubble constant H0 by measuring the time
delays between the quasar images. Here we report the measurement of two
independent time delays in the quadruply imaged quasar WFI J2033-4723 (z =
1.66). Our data consist of R-band images obtained with the Swiss 1.2 m EULER
telescope located at La Silla and with the 1.3 m SMARTS telescope located at
Cerro Tololo. The light curves have 218 independent epochs spanning 3 full
years of monitoring between March 2004 and May 2007, with a mean temporal
sampling of one observation every 4th day. We measure the time delays using
three different techniques, and we obtain Dt(B-A) = 35.5 +- 1.4 days (3.8%) and
Dt(B-C) = 62.6 +4.1/-2.3 days (+6.5%/-3.7%), where A is a composite of the
close, merging image pair. After correcting for the time delays, we find R-band
flux ratios of F_A/F_B = 2.88 +- 0.04, F_A/F_C = 3.38 +- 0.06, and F_A1/F_A2 =
1.37 +- 0.05 with no evidence for microlensing variability over a time scale of
three years. However, these flux ratios do not agree with those measured in the
quasar emission lines, suggesting that longer term microlensing is present. Our
estimate of H0 agrees with the concordance value: non-parametric modeling of
the lensing galaxy predicts H0 = 67 +13/-10 km s-1 Mpc-1, while the Single
Isothermal Sphere model yields H0 = 63 +7/-3 km s-1 Mpc-1 (68% confidence
level). More complex lens models using a composite de Vaucouleurs plus NFW
galaxy mass profile show twisting of the mass isocontours in the lensing
galaxy, as do the non-parametric models. As all models also require a
significant external shear, this suggests that the lens is a member of the
group of galaxies seen in field of view of WFI J2033-4723.Comment: 14 pages, 12 figures, published in A&
Microscopic calculation of 6Li elastic and transition form factors
Variational Monte Carlo wave functions, obtained from a realistic Hamiltonian
consisting of the Argonne v18 two-nucleon and Urbana-IX three-nucleon
interactions, are used to calculate the 6Li ground-state longitudinal and
transverse form factors as well as transition form factors to the first four
excited states. The charge and current operators include one- and two-body
components, leading terms of which are constructed consistently with the
two-nucleon interaction. The calculated form factors and radiative widths are
in good agreement with available experimental data.Comment: 9 pages, 2 figures, REVTeX, submitted to Physical Review Letters,
with updated introduction and reference
Gravitationally lensed QSOs in the ISSIS/WSO-UV era
Gravitationally lensed QSOs (GLQs) at redshift z = 1-2 play a key role in
understanding the cosmic evolution of the innermost parts of active galaxies
(black holes, accretion disks, coronas and internal jets), as well as the
structure of galaxies at intermediate redshifts. With respect to studies of
normal QSOs, GLQ programmes have several advantages. For example, a monitoring
of GLQs may lead to unambiguous detections of intrinsic and extrinsic
variations. Both kinds of variations can be used to discuss central engines in
distant QSOs, and mass distributions and compositions of lensing galaxies. In
this context, UV data are of particular interest, since they correspond to
emissions from the immediate surroundings of the supermassive black hole. We
describe some observation strategies to analyse optically bright GLQs at z of
about 1.5, using ISSIS (CfS) on board World Space Observatory-Ultraviolet.Comment: 7 pages, 4 figures, Accepted for publication in Astrophysics & Space
Scienc
Time delay between images of the lensed quasar UM673
We study brightness variations in the double lensed quasar UM673 (Q0142-100)
with the aim of measuring the time delay between its two images. In the paper
we combine our previously published observational data of UM673 obtained during
the 2003 - 2005 seasons at the Maidanak Observatory with archival and recently
observed Maidanak and CTIO UM673 data. We analyze the V, R and I-band light
curves of the A and B images of UM673, which cover ten observational seasons
from August 2001 to November 2010. We also analyze the time evolution of the
difference in magnitudes between images A and B of UM673 over more than ten
years. We find that the quasar exhibits both short-term (with amplitude of \sim
0.1 mag in the R band) and high-amplitude (\sim 0.3 mag) long-term variability
on timescales of about several months and several years, respectively. These
brightness variations are used to constrain the time delay between the images
of UM673. From cross-correlation analysis of the A and B quasar light curves
and error analysis we measure the mean time delay and its error of 89 \pm11
days. Given the input time delay of 88 days, the most probable value of the
delay that can be recovered from light curves with the same statistical
properties as the observed R-band light curves of UM673 is 95{+5/-16}{+14/-29}
days (68 and 95 % confidence intervals). Analysis of the V - I color variations
and V, R and I-band magnitude differences of the quasar images does not show
clear evidence of the microlensing variations between 1998 and 2010.Comment: Submitted to A&A, 11 pages, 9 figure
COSMOGRAIL: the COSmological MOnitoring of GRAvItational Lenses XIII: Time delays and 9-yr optical monitoring of the lensed quasar RX J1131-1231
We present the results from nine years of optically monitoring the
gravitationally lensed z=0.658 quasar RX J1131-1231. The R-band light curves of
the four individual images of the quasar were obtained using deconvolution
photometry for a total of 707 epochs. Several sharp quasar variability features
strongly constrain the time delays between the quasar images. Using three
different numerical techniques, we measure these delays for all possible pairs
of quasar images while always processing the four light curves simultaneously.
For all three methods, the delays between the three close images A, B, and C
are compatible with being 0, while we measure the delay of image D to be 91
days, with a fractional uncertainty of 1.5% (1 sigma), including systematic
errors. Our analysis of random and systematic errors accounts in a realistic
way for the observed quasar variability, fluctuating microlensing magnification
over a broad range of temporal scales, noise properties, and seasonal gaps.
Finally, we find that our time-delay measurement methods yield compatible
results when applied to subsets of the data.Comment: 11 pages, 9 figures, minor additions to the text only, techniques and
results remain unchanged, A&A in pres
MRI and clinical syndrome in dura materrelated Creutzfeldt-Jakob disease
Objective : Iatrogenic Creutzfeldt-Jakob disease (iCJD) is mainly associated with dura mater (DM) grafts and administration of human growth hormones (hGH). Data on disease course in DM-CJD are limited. We describe the clinical and diagnostic findings in this patient group with special emphasis on MRI signal alterations. Methods : Ten DM-CJD patients were studied for their clinical symptoms and diagnostic findings. The MRIs were evaluated for signal increase of the cortical and subcortical structures. Results : DM-CJD patients had a median incubation time of 18 years and median disease duration of 7 months. The majority of patients were MM homozygous at codon 129 of the prion protein gene (PRNP) and presented with gait ataxia and psychiatric symptoms. No correlation between the graft site and the initial disease course was found. The MRI showed cortical and basal ganglia signal increase each in eight out of ten patients and thalamic hyperintensity in five out of ten cases. Of interest, patients with thalamic signal increase were homozygous for methionine. Conclusion : The MRI findings in DM-CJD largely resemble those seen in sporadic CJD, as the cortex and basal ganglia are mainly affecte
COSMOGRAIL: the COSmological MOnitoring of GRAvItational Lenses IX. Time delays, lens dynamics and baryonic fraction in HE 0435-1223
We present accurate time delays for the quadruply imaged quasar HE 0435-1223.
The delays were measured from 575 independent photometric points obtained in
the R-band between January 2004 and March 2010. With seven years of data, we
clearly show that quasar image A is affected by strong microlensing variations
and that the time delays are best expressed relative to quasar image B. We
measured Delta_t(BC) = 7.8+/-0.8 days, Delta_t(BD) = -6.5+/-0.7 days and
Delta_t_CD = -14.3+/-0.8 days. We spacially deconvolved HST NICMOS2 F160W
images to derive accurate astrometry of the quasar images and to infer the
light profile of the lensing galaxy. We combined these images with a stellar
population fitting of a deep VLT spectrum of the lensing galaxy to estimate the
baryonic fraction, , in the Einstein radius. We measured f_b =
0.65+0.13-0.10 if the lensing galaxy has a Salpeter IMF and f_b =
0.45+0.04-0.07 if it has a Kroupa IMF. The spectrum also allowed us to estimate
the velocity dispersion of the lensing galaxy, sigma_ap = 222+/-34 km/s. We
used f_b and sigma_ap to constrain an analytical model of the lensing galaxy
composed of an Hernquist plus generalized NFW profile. We solve the Jeans
equations numerically for the model and explored the parameter space under the
additional requirement that the model must predict the correct astrometry for
the quasar images. Given the current error bars on f_b and sigma_ap, we did not
constrain H0 yet with high accuracy, i.e., we found a broad range of models
with chi^2 < 1. However, narrowing this range is possible, provided a better
velocity dispersion measurement becomes available. In addition, increasing the
depth of the current HST imaging data of HE 0435-1223 will allow us to combine
our constraints with lens reconstruction techniques that make use of the full
Einstein ring that is visible in this object.Comment: 12 pages, 10 figures, final version accepted for publication by A&
Towards absolute scales of radii and masses of open clusters
Aims: In this paper we derive tidal radii and masses of open clusters in the
nearest kiloparsecs around the Sun. Methods: For each cluster, the mass is
estimated from tidal radii determined from a fitting of three-parametric King's
profiles to the observed integrated density distribution. Different samples of
members are investigated. Results: For 236 open clusters, all contained in the
catalogue ASCC-2.5, we obtain core and tidal radii, as well as tidal masses.
The distributions of the core and tidal radii peak at about 1.5 pc and 7 - 10
pc, respectively. A typical relative error of the core radius lies between 15%
and 50%, whereas, for the majority of clusters, the tidal radius was determined
with a relative accuracy better than 20%. Most of the clusters have tidal
masses between 50 and 1000 , and for about half of the clusters, the
masses were obtained with a relative error better than 50%.Comment: 11 pages, 7 figures, accepted for publication in Astronomy &
Astrophysic
- …
