776 research outputs found

    Caterpillars and fungal pathogens: two co-occurring parasites of an ant-plant mutualism

    Get PDF
    In mutualisms, each interacting species obtains resources from its partner that it would obtain less efficiently if alone, and so derives a net fitness benefit. In exchange for shelter (domatia) and food, mutualistic plant-ants protect their host myrmecophytes from herbivores, encroaching vines and fungal pathogens. Although selective filters enable myrmecophytes to host those ant species most favorable to their fitness, some insects can by-pass these filters, exploiting the rewards supplied whilst providing nothing in return. This is the case in French Guiana for Cecropia obtusa (Cecropiaceae) as Pseudocabima guianalis caterpillars (Lepidoptera, Pyralidae) can colonize saplings before the installation of their mutualistic Azteca ants. The caterpillars shelter in the domatia and feed on food bodies (FBs) whose production increases as a result. They delay colonization by ants by weaving a silk shield above the youngest trichilium, where the FBs are produced, blocking access to them. This probable temporal priority effect also allows female moths to lay new eggs on trees that already shelter caterpillars, and so to occupy the niche longer and exploit Cecropia resources before colonization by ants. However, once incipient ant colonies are able to develop, they prevent further colonization by the caterpillars. Although no higher herbivory rates were noted, these caterpillars are ineffective in protecting their host trees from a pathogenic fungus, Fusarium moniliforme (Deuteromycetes), that develops on the trichilium in the absence of mutualistic ants. Therefore, the Cecropia treelets can be parasitized by two often overlooked species: the caterpillars that shelter in the domatia and feed on FBs, delaying colonization by mutualistic ants, and the fungal pathogen that develops on old trichilia. The cost of greater FB production plus the presence of the pathogenic fungus likely affect tree growth

    Time- and angle-resolved photoelectron spectroscopy of strong-field light-dressed solids: Prevalence of the adiabatic band picture

    Get PDF
    In recent years, strong-field physics in condensed matter was pioneered as a potential approach for controlling material properties through laser dressing, as well as for ultrafast spectroscopy via nonlinear light-matter interactions (e.g., harmonic generation). A potential controversy arising from these advancements is that it is sometimes vague which band picture should be used to interpret strong-field experiments: The field-free bands, the adiabatic (instantaneous) field-dressed bands, Floquet bands, or some other intermediate picture. Here, we try to resolve this issue by performing theoretical experiments of time- and angle-resolved photoelectron spectroscopy (Tr-ARPES) for a strong-field laser-pumped solid, which should give access to the actual observable bands of the irradiated material. To our surprise, we find that the adiabatic band picture survives quite well up to high field intensities (∼1012W/cm2) and in a wide frequency range (driving wavelengths of 4000 to 800 nm, with Keldysh parameters ranging up to ∼7). We conclude that, to first order, the adiabatic instantaneous bands should be the standard blueprint for interpreting ultrafast electron dynamics in solids when the field is highly off resonant with characteristic energy scales of the material. We then discuss weaker effects of modifications of the bands beyond this picture that are nonadiabatic, showing that by using bichromatic fields the deviations from the standard picture can be probed with enhanced sensitivity. In this paper, we outline a clear band picture for the physics of strong-field interactions in solids, which should be useful for designing and analyzing strong-field experimental observables and to formulate simpler semi-empirical models

    Repetitions in infinite palindrome-rich words

    Full text link
    Rich words are characterized by containing the maximum possible number of distinct palindromes. Several characteristic properties of rich words have been studied; yet the analysis of repetitions in rich words still involves some interesting open problems. We address lower bounds on the repetition threshold of infinite rich words over 2 and 3-letter alphabets, and construct a candidate infinite rich word over the alphabet Σ2={0,1}\Sigma_2=\{0,1\} with a small critical exponent of 2+2/22+\sqrt{2}/2. This represents the first progress on an open problem of Vesti from 2017.Comment: 12 page

    Trees as Islands: Canopy Ant Species Richness Increases with the Size of Liana-Free Trees in a Neotropical Forest

    Get PDF
    The physical characteristics of habitats shape local community structure; a classic example is the positive relationship between the size of insular habitats and species richness. Despite the high density and proximity of tree crowns in forests, trees are insular habitats for some taxa. Specifically, crown isolation (i.e. crown shyness) prevents the movement of small cursorial animals among trees. Here, we tested the hypothesis that the species richness of ants (Sa) in individual, isolated trees embedded within tropical forest canopies increases with tree size. We predicted that this pattern disappears when trees are connected by lianas (woody vines) or when strong interactions among ant species determine tree occupancy. We surveyed the resident ants of 213 tree crowns in lowland tropical forest of Panama. On average, 9.2 (range = 2–20) ant species occupied a single tree crown. Average (± SE) Sa was ca 25% higher in trees with lianas (10.2 ± 0.26) than trees lacking lianas (8.0 ± 0.51). Sa increased with tree size in liana‐free trees (Sa = 10.99A0.256), but not in trees with lianas. Ant species composition also differed between trees with and without lianas. Specifically, ant species with solitary foragers occurred more frequently in trees with lianas. The mosaic‐like pattern of species co‐occurrence observed in other arboreal ant communities was not found in this forest. Collectively, the results of this study indicate that lianas play an important role in shaping the local community structure of arboreal ants by overcoming the insular nature of tree crowns

    Historia poblacional y análisis antropogenético de la ciudad de Salta

    Get PDF
    In the present study, the genetic composition of Salta capital city was estimated in a population sample. A total of 223 non-related​ blood-donors from the Centro Privado de Hemoterapia were included, who provided written informed consent and genealogical information. Twelve autosomal markers, GM allotypes, mtDNA and Y-chromosome continental origin were analysed; genetic admixture was estimated employing the ADMIX program. Autosomal markers show the presence of 50,02% for the Amerindian component, 46,29% for the European and 3,51% for the African component. Amerindians mitochondrial haplogroups represented a 93,75%, while the Europeans haplogroups represented a 3,85% and the Africans a 2,40%; 17,1% of males analysed exhibited the aboriginal variant Q*M3. The data were compared to those obtained previously in other cities, and the genetic admixture of Salta showed the highest values of Amerindian and African component. The intraregional immigration is much more remarkable than interregional or foreign immigration. These studies reinforce the idea that the Argentine population should not be considered as a homogeneus totality but variability must be taken into account

    Inherited biotic protection in a Neotropical pioneer plant

    Get PDF
    Chelonanthus alatus is a bat-pollinated, pioneer Gentianaceae that clusters in patches where still-standing, dried-out stems are interspersed among live individuals. Flowers bear circum-floral nectaries (CFNs) that are attractive to ants, and seed dispersal is both barochorous and anemochorous. Although, in this study, live individuals never sheltered ant colonies, dried-out hollow stems - that can remain standing for 2 years - did. Workers from species nesting in dried-out stems as well as from ground-nesting species exploited the CFNs of live C. alatus individuals in the same patches during the daytime, but were absent at night (when bat pollination occurs) on 60.5% of the plants. By visiting the CFNs, the ants indirectly protect the flowers - but not the plant foliage - from herbivorous insects. We show that this protection is provided mostly by species nesting in dried-out stems, predominantly Pseudomyrmex gracilis. That dried-out stems remain standing for years and are regularly replaced results in an opportunistic, but stable association where colonies are sheltered by one generation of dead C. alatus while the live individuals nearby, belonging to the next generation, provide them with nectar; in turn, the ants protect their flowers from herbivores. We suggest that the investment in wood by C. alatus individuals permitting stillstanding, dried-out stems to shelter ant colonies constitutes an extended phenotype because foraging workers protect the flowers of live individuals in the same patch. Also, through this process these dried-out stems indirectly favor the reproduction (and so the fitness) of the next generation including both their own offspring and that of their siblings, alladding up to a potential case of inclusive fitness in plants

    Ultrafast Light-Induced Lifshitz Transition

    Get PDF
    Fermi surface is at the heart of our understanding of metals and strongly correlated many-body systems. An abrupt change in the Fermi surface topology, also called Lifshitz transition, can lead to the emergence of fascinating phenomena like colossal magnetoresistance and superconductivity. While Lifshitz transitions have been demonstrated for a broad range of materials and using different types of static external perturbations such as strain, doping, pressure and temperature, a non-equilibrium route toward ultrafast and transient modification of the Fermi surface topology has not been experimentally demonstrated. Combining time-resolved multidimensional photoemission spectroscopy with state-of-the-art TDDFT+U simulations, we introduce a scheme for driving an ultrafast Lifshitz transition in the correlated Weyl semimetal Td-MoTe2. We demonstrate that this non-equilibrium topological electronic transition finds its microscopic origin in the dynamical modification of the effective electronic correlations. These results shed light on a novel ultrafast and all-optical scheme for controlling the Fermi surface topology in correlated quantum materials
    corecore