11 research outputs found

    Hsp90 middle domain phosphorylation initiates a complex conformational program to recruit the ATPase-stimulating cochaperone Aha1

    Get PDF
    Complex conformational dynamics are essential for function of the dimeric molecular cha- perone heat shock protein 90 (Hsp90), including transient, ATP-biased N-domain dimer- ization that is necessary to attain ATPase competence. The intrinsic, but weak, ATP hydrolyzing activity of human Hsp90 is markedly enhanced by the co-chaperone Aha1. However, the cellular concentration of Aha1 is substoichiometric relative to Hsp90. Here we report that initial recruitment of this cochaperone to Hsp90 is markedly enhanced by phosphorylation of a highly conserved tyrosine (Y313 in Hsp90α) in the Hsp90 middle domain. Importantly, phosphomimetic mutation of Y313 promotes formation of a transient complex in which both N- and C-domains of Aha1 bind to distinct surfaces of the middle domains of opposing Hsp90 protomers prior to ATP-directed N-domain dimerization. Thus, Y313 represents a phosphorylation-sensitive conformational switch, engaged early after client loading, that affects both local and long-range conformational dynamics to facilitate initial recruitment of Aha1 to Hsp90

    Heterogeneity and dynamics in the assembly of the Heat Shock Protein 90 chaperone complexes

    No full text
    The Hsp90 cycle depends on the coordinated activity of a range of cochaperones, including Hop, Hsp70 and peptidyl-prolyl isomerases such as FKBP52. Using mass spectrometry, we investigate the order of addition of these cochaperones and their effects on the stoichiometry and composition of the resulting Hsp90-containing complexes. Our results show that monomeric Hop binds specifically to the Hsp90 dimer whereas FKBP52 binds to both monomeric and dimeric forms of Hsp90. By preforming Hsp90 complexes with either Hop, followed by addition of FKBP52, or with FKBP52 and subsequent addition of Hop, we monitor the formation of a predominant asymmetric ternary complex containing both cochaperones. This asymmetric complex is subsequently able to interact with the chaperone Hsp70 to form quaternary complexes containing all four proteins. Monitoring the population of these complexes during their formation and at equilibrium allows us to model the complex formation and to extract 14 different KD values. This simultaneous calculation of the KDs from a complex system with the same method, from eight deferent datasets under the same buffer conditions delivers a self-consistent set of values. In this case, the KD values afford insights into the assembly of ten Hsp90-containing complexes and provide a rationale for the cellular heterogeneity and prevalence of intermediates in the Hsp90 chaperone cycle

    Challenging Proteostasis: Role of the Chaperone Network to Control Aggregation-Prone Proteins in Human Disease

    No full text
    Protein homeostasis (Proteostasis) is essential for correct and efficient protein function within the living cell. Among the critical components of the Proteostasis Network (PN) are molecular chaperones that serve widely in protein biogenesis under physiological conditions, and prevent protein misfolding and aggregation enhanced by conditions of cellular stress. For Alzheimer’s, Parkinson’s, Huntington’s diseases and ALS, multiple classes of molecular chaperones interact with the highly aggregation-prone proteins amyloid-ÎČ, tau, α-synuclein, huntingtin and SOD1 to influence the course of proteotoxicity associated with these neurodegenerative diseases. Accordingly, overexpression of molecular chaperones and induction of the heat shock response have been shown to be protective in a wide range of animal models of these diseases. In contrast, for cancer cells the upregulation of chaperones has the undesirable effect of promoting cellular survival and tumor growth by stabilizing mutant oncoproteins. In both situations, physiological levels of molecular chaperones eventually become functionally compromised by the persistence of misfolded substrates, leading to a decline in global protein homeostasis and the dysregulation of diverse cellular pathways. The phenomenon of chaperone competition may underlie the broad pathology observed in aging and neurodegenerative diseases, and restoration of physiological protein homeostasis may be a suitable therapeutic avenue for neurodegeneration as well as for cancer

    Structure and pro-toxic mechanism of the human Hsp90/PPIase/Tau complex

    No full text
    The molecular chaperone Hsp90 is critical for the maintenance of cellular homeostasis and represents a promising drug target. Despite increasing knowledge on the structure of Hsp90, the molecular basis of substrate recognition and pro-folding by Hsp90/co-chaperone complexes remains unknown. Here, we report the solution structures of human full-length Hsp90 in complex with the PPIase FKBP51, as well as the 280 kDa Hsp90/FKBP51 complex bound to the Alzheimer's disease-related protein Tau. We reveal that the FKBP51/Hsp90 complex, which synergizes to promote toxic Tau oligomers in vivo, is highly dynamic and stabilizes the extended conformation of the Hsp90 dimer resulting in decreased Hsp90 ATPase activity. Within the ternary Hsp90/FKBP51/Tau complex, Hsp90 serves as a scaffold that traps the PPIase and nucleates multiple conformations of Tau's proline-rich region next to the PPIase catalytic pocket in a phosphorylation-dependent manner. Our study defines a conceptual model for dynamic Hsp90/co-chaperone/client recognition.peerReviewe
    corecore