85 research outputs found

    Impact of remote sensing upon the planning, management and development of water resources, appendix

    Get PDF
    Lists are presented of water resource agencies from the federal, state, Water Resources Research Institute, university, local, and private sectors. Information is provided on their water resource activities, computers, and models used. For Basic doc., see N75-25263

    Impact of remote sensing upon the planning, management, and development of water resources

    Get PDF
    Principal water resources users were surveyed to determine the impact of remote data streams on hydrologic computer models. Analysis of responses demonstrated that: most water resources effort suitable to remote sensing inputs is conducted through federal agencies or through federally stimulated research; and, most hydrologic models suitable to remote sensing data are federally developed. Computer usage by major water resources users was analyzed to determine the trends of usage and costs for the principal hydrologic users/models. The laws and empirical relationships governing the growth of the data processing loads were described and applied to project the future data loads. Data loads for ERTS CCT image processing were computed and projected through the 1985 era

    Population exposure to hazardous air quality due to the 2015 fires in Equatorial Asia.

    Get PDF
    Vegetation and peatland fires cause poor air quality and thousands of premature deaths across densely populated regions in Equatorial Asia. Strong El-Niño and positive Indian Ocean Dipole conditions are associated with an increase in the frequency and intensity of wildfires in Indonesia and Borneo, enhancing population exposure to hazardous concentrations of smoke and air pollutants. Here we investigate the impact on air quality and population exposure of wildfires in Equatorial Asia during Fall 2015, which were the largest over the past two decades. We performed high-resolution simulations using the Weather Research and Forecasting model with Chemistry based on a new fire emission product. The model captures the spatio-temporal variability of extreme pollution episodes relative to space- and ground-based observations and allows for identification of pollution sources and transport over Equatorial Asia. We calculate that high particulate matter concentrations from fires during Fall 2015 were responsible for persistent exposure of 69 million people to unhealthy air quality conditions. Short-term exposure to this pollution may have caused 11,880 (6,153-17,270) excess mortalities. Results from this research provide decision-relevant information to policy makers regarding the impact of land use changes and human driven deforestation on fire frequency and population exposure to degraded air quality.This research was supported in part by a L’Oréal-UNESCO UK and Ireland Fellowship For Women In Science (to PC), the Natural Environmental Research Council (NERC) through the LICS the SAMBBA project (ref. NE/J009822/1), the EPA STAR program (R835422), and the National Research Fellow Award (NRF2012NRFNRFF001-031). EB is partly supported by funding from UBoC. Further support was provided by the Lilly Endowment, Inc., through its support for the Indiana University Pervasive Technology Institute and the Indiana METACyt Initiative. This work makes use of the LandScan (2013)™ High Resolution global Population Data Set copyrighted by UT-Battelle, LLC, operator of Oak Ridge National Laboratory under Contract No. DE-AC05- 00OR22725 with the United States Department of Energy. Global Burden of Disease used in this study have been accessed from the Institute for Health Metric and Evaluation website: http://ghdx.healthdata.org/ihme_data. We gratefully acknowledge the National Environment Agency (NEA) of Singapore for collecting and providing PM2.5 and PSI data (available at http://www.nea.gov.sg/anti-pollution-radiation-protection/air-pollution-control/psi/historical-psi-readings). The National Center for Atmospheric Research is operated by the University Corporation for Atmospheric Research under the sponsorship of the National Science Foundation. We thank Louisa Emmons for providing the boundary conditions for dust from CAM-Chem. We also acknowledge the NASA scientists responsible for MODIS products, WRF-Chem developers and ACOM scientists at NCAR for useful discussion on model set-up

    The application of remote sensing to the development and formulation of hydrologic planning models

    Get PDF
    Regional hydrologic planning models built upon remote sensing capabilities and suited for ungaged watersheds are developed. The effectiveness of such models is determined along with which parameters impact most the minimization of errors associated with the prediction of peak flow events (floods). Emphasis is placed on peak flood prediction because of its significance to users for the purpose of planning, sizing, and designing waterworks

    Interannual variability of the surface summertime eastward jet in the South China Sea

    Get PDF
    Author Posting. © American Geophysical Union, 2014. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 119 (2014): 7205–7228, doi:10.1002/2014JC010206.The summertime eastward jet (SEJ) located around 12°N, 110°E–113°E, as the offshore extension of the Vietnam coastal current, is an important feature of the South China Sea (SCS) surface circulation in boreal summer. Analysis of satellite-derived sea level and sea surface wind data during 1992–2012 reveals pronounced interannual variations in its surface strength (SSEJ) and latitudinal position (YSEJ). In most of these years, the JAS (July, August, and September)-mean SSEJ fluctuates between 0.17 and 0.55 m s−1, while YSEJ shifts between 10.7°N and 14.3°N. These variations of the SEJ are predominantly contributed from the geostrophic current component that is linked to a meridional dipole pattern of sea level variations. This sea level dipole pattern is primarily induced by local wind changes within the SCS associated with the El Niño-Southern Oscillation (ENSO). Enhanced (weakened) southwest monsoon at the developing (decaying) stage of an El Niño event causes a stronger (weaker) SEJ located south (north) of its mean position. Remote wind forcing from the tropical Pacific can also affect the sea level in the SCS via energy transmission through the Philippine archipelago, but its effect on the SEJ is small. The impact of the oceanic internal variability, such as eddy-current interaction, is assessed using an ocean general circulation model (OGCM). Such impact can lead to considerable year-to-year changes of sea level and the SEJ, equivalent to ∼20% of the observed variation. This implies the complexity and prediction difficulty of the upper ocean circulation in this region.This research was supported by the ONR grant N00014-12-1-03-23 and the NSF CAREER Award 0847605.2015-04-2

    Impact of the 2015 wildfires on Malaysian air quality and exposure: a comparative study of observed and modeled data

    Get PDF
    In September and October 2015, Equatorial Asia experienced the most intense biomass burning episodes over the past two decades. These events, mostly enhanced by the extremely dry weather associated with the occurrence of strong El Niño conditions, resulted in the transnational transport of hazardous pollutants from the originating sources in Indonesian Borneo and Sumatra to the highly populated Malaysian Peninsula. Quantifying the population exposure form this event is a major challenge, and only two model-based studies have been performed to date, with limited evaluation against measurements. This manuscript presents a new data set of 49 monitoring stations across Peninsular Malaysia and Malaysian Borneo active during the 2015 haze event, and performs the first comparative study of PM10 (particulate matter with diameter < 10 µm) and carbon monoxide (CO) against the output of a state-of-the-art regional model (WRF-Chem). WRF-Chem presents high skills in describing the spatio-temporal patterns of both PM10 and CO and thus was applied to estimate the impact of the 2015 wildfires on population exposure. This study showed that more than 60% of the population living in the highly populated region of the Greater Klang Valley was systematically exposed to unhealthy/hazardous air quality conditions associated with the increased pollutant concentrations from wildfires and that almost 40% of the Malaysian population was on average exposed to PM10 concentrations higher than 100 µg m−3 during September and October 2015
    corecore