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Population exposure to hazardous 
air quality due to the 2015 fires in 
Equatorial Asia
P. Crippa1, S. Castruccio2, S. Archer-Nicholls3, G. B. Lebron4, M. Kuwata4,5, A. Thota6, 
S. Sumin7, E. Butt8, C. Wiedinmyer3 & D. V. Spracklen8

Vegetation and peatland fires cause poor air quality and thousands of premature deaths across densely 
populated regions in Equatorial Asia. Strong El-Niño and positive Indian Ocean Dipole conditions 
are associated with an increase in the frequency and intensity of wildfires in Indonesia and Borneo, 
enhancing population exposure to hazardous concentrations of smoke and air pollutants. Here we 
investigate the impact on air quality and population exposure of wildfires in Equatorial Asia during Fall 
2015, which were the largest over the past two decades. We performed high-resolution simulations 
using the Weather Research and Forecasting model with Chemistry based on a new fire emission 
product. The model captures the spatio-temporal variability of extreme pollution episodes relative to 
space- and ground-based observations and allows for identification of pollution sources and transport 
over Equatorial Asia. We calculate that high particulate matter concentrations from fires during Fall 
2015 were responsible for persistent exposure of 69 million people to unhealthy air quality conditions. 
Short-term exposure to this pollution may have caused 11,880 (6,153–17,270) excess mortalities. 
Results from this research provide decision-relevant information to policy makers regarding the impact 
of land use changes and human driven deforestation on fire frequency and population exposure to 
degraded air quality.

Vegetation and peatland fires are a common occurrence across Equatorial Asia1,2. Fires are used to manage the 
land, clear vegetation and to prepare and maintain land for agriculture3–6. Fires emit trace gases and fine par-
ticulate matter to the atmosphere causing extremely poor regional air quality7,8. Exposure of the population to 
degraded air quality results in thousands of premature deaths each year across Equatorial Asia9,10.

Whilst fires across Equatorial Asia have largely anthropogenic ignitions, with most burning occurring on 
deforested land11 and degraded peatlands12, the susceptibility of the landscape to fire is exacerbated by drought 
conditions during positive phases of the El Niño Southern Oscillation (ENSO)13–15 and the Indian Ocean Dipole 
(IOD)16. Across Borneo, fire emissions in El Niño years can be up to 30 times greater than during La Niña17.

In September and October 2015, strong positive ENSO and IOD conditions suppressed precipitation over 
Indonesia resulting in a dry and highly flammable landscape and widespread fires18. These fires caused the larg-
est emissions of carbon dioxide from Equatorial Asia since the El Niño fires of 19974,19,20 and resulted in a large 
regional haze event. Total particulate matter emissions from this region were 1.8 Tg over the September-October 
period, 2.2 times the 2002–2014 mean (Figure S1a), suggesting that the exposure to particulate pollution was sub-
stantially greater than in other years. In Singapore (5.5 million people, Department of Statistics, Singapore) the 
Pollutant Standards Index (PSI)21, used to indicate the impact of ambient air pollution on human health, reported 
unhealthy conditions (PSI: 101–200) for more than 50% of days in September-October 2015, with shorter peri-
ods of very unhealthy (PSI: 201–300) and hazardous (PSI >​ 300) conditions. However, the extent of the regional 
haze and the number of exposed people across the densely populated Equatorial Asia (Fig. 1a) is not accurately 

1COMET, School of Civil Engineering and Geosciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK. 
2School of Mathematics and Statistics, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK. 3Atmospheric 
Chemistry Observations & Modeling Laboratory, National Center for Atmospheric Research, Boulder, CO, 80301, 
USA. 4Earth Observatory of Singapore, Nanyang Technological University, 639798, Singapore. 5Asian School of 
the Environment, Nanyang Technological University, 639798, Singapore. 6Pervasive Technology Institute, Indiana 
University, Bloomington, IN 47405, USA. 7Environmental Agency, Pekanbaru City, Riau Province, Indonesia. 8School 
of Earth and Environment, University of Leeds, Leeds, LS2 9JT, UK. Correspondence and requests for materials 
should be addressed to P.C. (email: paola.crippa@ncl.ac.uk)

received: 02 August 2016

accepted: 24 October 2016

Published: 16 November 2016

OPEN

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Apollo

https://core.ac.uk/display/77415869?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:paola.crippa@ncl.ac.uk


www.nature.com/scientificreports/

2Scientific Reports | 6:37074 | DOI: 10.1038/srep37074

quantified due to the lack of high-resolution data in space and time either from remote sensing platforms or from 
numerical model simulations over the region.

In this work we quantify population exposure to degraded air quality conditions and associated mortality, 
which are mostly dictated by high concentrations of particulate matter with aerodynamic diameter less than 2.5 μ​m  
([PM2.5]) attributable to the September-October 2015 wildfires. Our analysis is based on regional simulations 
of the Weather Research and Forecasting model with Chemistry (WRF-Chem)22,23 (Table S1) and an updated 
version of the Fire Inventory for NCAR24 (FINN v2, Fig. 1b and Figure S1b). The model is resolved at 10 km hori-
zontal grid spacing and provides hourly output of key meteorological and chemical variables, thus overcoming 
major limitations associated with the use of coarse resolution global models for analogous assessments (~200 km 
and daily output)8,10,25. We show that high-resolution simulations can accurately describe the spatial and temporal 
distribution of harmful air pollutants in the region as a result of fires and allow for a detailed estimate of the total 
population exposure to unhealthy air quality conditions and of the associated mortality.

Results and Discussion
We evaluate the model skill in reproducing spatio-temporal variability of aerosol optical properties and concen-
trations of particulate matter (PM) against a suite of space- and ground-based observations. WRF-Chem is able 
to simulate the spatial distribution of observed aerosol optical depth (AOD), with spatial correlation coefficients 
between weekly average AOD fields from MODIS (Terra and Aqua) and WRF-Chem ranging from 0.56–0.73 
(Figure S2). The model exhibits highest correlations with observations during September-October when fires 
were active and extreme pollution episodes occurred (Figure S1b), with lower correlations (~0.2) associated with 
the low AOD values recorded in November. The model is characterized by a systematic negative bias in compar-
ison to MODIS, with a Normalized Mean Bias Factor (NMBF, see Methods) of −​0.78 and −​0.54 for weekly aver-
aged AOD collected onboard Terra and Aqua, respectively. Model underestimation of observed AOD in regions 
impacted by fires has been reported by numerous previous studies7,8,10,26. Many of these previous studies increased 
emissions to match observed AOD, although uncertainties in aerosol optical properties and water uptake could 
contribute to model-observation discrepancy of AOD27. Despite the underestimation in AOD magnitude, the 
spatial pattern of simulated AOD values does not present any systematic bias after long-range transport as indi-
cated by the absence of sharp gradients in the ratio of simulated and observed AOD away from fire sources 
(Figure S2(d) and (h)). This thus increases the confidence in our simulated spatial patterns of AOD and hence our 
estimated regions of unhealthy air quality conditions.

To further examine the ability of the model to reproduce regional air quality we compared WRF-Chem output 
against two ground-based sites measuring concentrations of particulate matter. The model captures well both 
the magnitude and temporal variability of surface particulate matter concentrations measured over Singapore 
and Pekanbaru in Sumatra (Tables S2 and S3, Figs 1a and 2). Analyses of high frequency (30 minute to 1 hr) 
measurements collected at those sites reveal peak PM10 (i.e. particulate matter with aerodynamic diameter less 
than 10 μ​m) concentrations above 600 μ​g m−3 in Pekanbaru and peak PM2.5 concentrations above 200 μ​g m−3 in 
Singapore, correctly simulated both in terms of magnitude and temporal occurrence (Fig. 2). The mean observed 
[PM2.5] in Singapore during September-November 2015 was 52 μ​g m−3, well reproduced by the model (45 μ​g m−3, 
NMBF =​ −​0.15; Table S3). During this period, the temporal variability of PM2.5 shows a correlation coefficient 
(R) of 0.45 between hourly observations and simulated values (R =​ 0.55 for daily mean concentrations, Table S3 
and Fig. 2b). Similar skills are found in Pekanbaru, where the mean observed [PM10] was 174 μ​g m−3, slightly 
underestimated by the model (140 μ​g m−3, NMBF =​ −​0.24) and R =​ 0.57 (R =​ 0.72 for daily aggregated data). 
The higher model skill (lower underestimation) in describing PM2.5 concentrations than AOD is likely due to the 
issues in representation of water uptake and other aspects of the AOD calculation in the adopted aerosol scheme. 
The close agreement between observed and simulated PM concentrations suggests that for simulation of surface 
particulate air quality, FINN fire emissions do not need to be scaled during this period. At the end of October the 
onset of seasonal rains extinguished fires across the region19 (Figure S1b), hence particulate matter concentrations 
observed in November when few fires occurred were much lower (19 μ​g m−3 in Singapore), with this transition 
reproduced by the model (21 μ​g m−3).

Figure 1.  Population and fire location in Equatorial Asia. (a) 2013 population density (people km−2) in the 
model simulation area from LandScan High Resolution global Population Data at ~1 km ×​ 1 km resolution29. 
The major cities mentioned in the text are also reported. (b) Mean total daily emissions of PM2.5 [μ​g m−2 s−1] 
from fires (FINN v2) during September-October. Maps created using Matlab vR2014b mapping toolbox http://
www.mathworks.com/products/matlab/.

http://www.mathworks.com/products/matlab/
http://www.mathworks.com/products/matlab/
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All regions in Singapore observed mean [PM2.5] above the World Health Organization (WHO) air quality 
guidelines for 24-hr [PM2.5] (25 μ​g m−3)28, with highest concentrations in the Western and Southern regions 
(Table S3). Similarly in Pekanbaru, observed [PM10] was considerably above the WHO air quality guidelines for 
24-hr [PM10] of 50 μ​g m−3. Simulated mean surface PM2.5 and PM10 concentrations exceeded the WHO air quality  
during September to October 2015, almost everywhere across Equatorial Asia (Fig. 3a and Figure S3a). To 

Figure 2.  Observed and simulated particulate matter concentrations. Observed (black) and simulated (red) 
(a) 30-minute [PM10] at the ground-based station of Pekanbaru (Fig. 1a), in Sumatra and (b) hourly [PM2.5] 
averaged over Singapore. Summary statistics of model skill in reproducing daily mean concentrations are also 
reported in terms of correlation coefficient (R) and Normalized Mean Bias Factor (NMBF)49.

Figure 3.  Contribution of fires to PM2.5. (a) Mean [PM2.5] in μ​g m−3 during September-October. The white 
shading indicates areas with concentrations corresponding to the WHO air quality guidelines for 24-hr [PM2.5] 
(i.e. 25 μ​g m−3)28, the blue shading refers to values below the limit and the red shading to concentrations above 
that limit. (b) P M

P M
F

NF
, factor increase of [PM2.5] due to fires relative to background concentrations from other 

sources. PMF and PMNF are mean [PM2.5] concentrations during September-October of the run with fires and 
the one without fire emissions, respectively. Maps created using Matlab vR2014b mapping toolbox http://www.
mathworks.com/products/matlab/.

http://www.mathworks.com/products/matlab/
http://www.mathworks.com/products/matlab/
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estimate the impact of this regional pollution, we calculate the number of people exposed to PM concentrations 
above the WHO 24-hr guidelines for at least 50% of September to October 2015. We find that 185 million people 
were persistently exposed to [PM10] higher than the WHO 24-hr guidelines and 217 million people exposed to 
[PM2.5] higher than the WHO 24-hr guidelines (Figure S4). We quantify the contribution of wildfires in degrad-
ing air quality by comparing simulations including fire emissions and an analogous run without fires. Wildfires 
fires during September and October are responsible for increasing background PM concentrations over most 
areas by at least a factor of 30, and up to a factor of 100 over regions over the eastern part of the provinces of Jambi 
and South Sumatra, and Central Kalimantan (Fig. 3b and Figure S3b). In the absence of fires, 73 million people 
in the urban areas of Jakarta, Ho Chi Minh City, Bangkok, Kuala Lumpur and Singapore, would have received 
persistent exposure to both [PM10] and [PM2.5] above WHO guidelines (Figure S4).

To further quantify the human population exposure to degraded air quality conditions, we calculate PSI 
values from simulated pollutant concentrations (see Methods) and estimate the number of people living in 
regions where the PSI is classified as unhealthy for at least 50% of the September-October 2015 period (Fig. 4a)29. 
Unhealthy PSI on at least one day in two occurred over most of Sumatra, Borneo, Malaysia and Singapore (con-
sistently with Singapore PSI reports21) and very unhealthy and hazardous PSI were experienced in regions over 
Jambi and Palembang in Sumatra and Central Kalimantan (Fig. 4a). We calculate that in total 69 million people 
were exposed to unhealthy PSI levels, and that 6 million and 2 million people were exposed to very unhealthy and 
hazardous conditions for 50% of the period, respectively (Fig. 4a). Simulations without fire emissions indicate 

Figure 4.  Human exposure to unhealthy air quality and premature deaths. (a) Areas of unhealthy (yellow, 
PSI >​ 100), very unhealthy (orange, PSI >​ 200) and hazardous (red, PSI >​ 300) air quality conditions on at 
least one day in two during September-October. The colored numbers refer to the total number of people 
(M =​ million) exposed to those different thresholds. For comparison, when only anthropogenic emissions 
are present, the number of people exposed to unhealthy conditions is approximately 4 million and no people 
are exposed to very unhealthy or hazardous conditions. Map created using Matlab vR2014b mapping toolbox 
http://www.mathworks.com/products/matlab/. (b) Estimated increase in premature deaths due to short-term 
exposure to [PM2.5] from wildfires during September-October (the pink shading indicates the 95% confidence 
interval). The total number of fatalities estimated is 11,880 (6,153–17,270) people (see Methods for details).

http://www.mathworks.com/products/matlab/
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that only 4 million people, concentrated within the urban areas of Jakarta, Kuala Lumpur, and Ho Chi Minh City, 
would have been exposed to unhealthy PSI levels. Thus, our work indicates fires are responsible for increasing 
population exposure by more than factor 15, resulting in an additional 65 million people exposed to unhealthy 
conditions. The discrepancy in population exposure estimated using PSI relative to the WHO 24-hr limits (Figs 4 
and S4) is attributable to the less restrictive bounds for unhealthy conditions in the PSI definition (Table S4).

We calculate excess all-cause mortality due to short-term exposure to PM2.5 using simulated 24 hr [PM2.5] and 
exposure-response functions from the most recent and comprehensive epidemiological studies linking health 
impacts to short-term exposure to outdoor fine particulate matter30,31 (see Methods). We apply a short-term 
exposure-response function because the population was exposed to high levels of pollution for <​60 days and 
emissions during this period were substantially greater than usual (Figure S1). We estimate an additional 11,880 
(with a 95% confidence interval of 6,153–17,270) all-cause premature mortalities due to short-term exposure to 
high concentrations of PM2.5 associated with wildfires during September-October 2015 (Figs 4b and S5a). This 
number of premature deaths is a conservative estimate since it is inferred from particulate matter concentrations 
that are slightly underestimated in our model simulations. Further, the estimated deaths represent only a fraction 
of the overall premature fatalities due to long-term exposure to unhealthy air quality conditions.

We have shown that a high-resolution regional atmospheric model in combination with satellite-derived fire 
emissions can provide a reliable assessment of air quality conditions during an intense air pollution episode 
caused by landscape fires. Our work confirms that the Fall 2015 Indonesian fires resulted in regional scale air 
pollution, with 69 million people exposed to persistent poor air quality, equivalent to 24% of the combined pop-
ulation of Malaysia, Singapore and Indonesia. Further, we estimate that 11,880 fatalities occurred as a result of 
short-term exposure to extreme particulate matter concentrations. If fires similar to those of Fall 2015 were to 
become more frequent, either due to changes in climate or through expansion of oil palm and timber conces-
sions12, the public health burden from air pollution would rise considerably. We estimate that ~75,600 excess 
premature mortalities (Figure S5b and Table S5, see Methods) would occur each year if the population received 
long-term exposure to the pollutant concentrations experienced in Fall 2015, consistent with a previous estimate32.  
Fire mitigation and control measures need to be implemented to prevent such episodes occurring in the future18.

Methods
WRF-Chem simulations.  We applied the Weather Research and Forecasting model (version 3.5) with 
Chemistry (WRF-Chem)23 at 10 km horizontal resolution, with 51 vertical levels, over Equatorial Asia from 1 
September to 1 December 2015. The domain is centered at (115°E, 2°N) and extends over 490 ×​ 300 grid cells 
(longitudes ×​ latitudes). A detailed summary of the physical and chemical schemes applied is provided in 
Table S1. Meteorological and chemical lateral boundary conditions are specified every 6 hours using output from 
the high resolution European Centre for Medium-Range Weather Forecasts (HRES-ECMWF) model at ~16 km33, 
and MOZART-4 (Model for Ozone and Related chemical Tracers, version 4)34. Climatological dust fields within 
MOZART-4 are replaced with CAM-Chem (Community Atmosphere Model with Chemistry) dust which are 
computed according to model simulated wind speeds and surface conditions35. To constrain the meteorology 
we use Four-Dimensional Data Assimilation (FDDA)36 to analysis-nudge model water vapor, wind and temper-
ature fields above the boundary layer, with updates from ECMWF data every 6 hours. Biogenic emissions are 
computed online with MEGAN (Model of Emissions of Gases and Aerosols from Nature) version 2.0437, whereas 
fire emissions are specified using the FINN (Fire INventory from NCAR)24 inventory version 238. FINN provides 
daily global estimates of trace gases and particles emitted by open biomass burning at ~1 km resolution. The new 
FINNv2 computes fire area burned from the available fire detections in a novel way relative to FINNv1.5 and also 
includes updated emission factors39–42, fuel loadings, and year-specific land cover datasets. Non‐methane organic 
compound emissions were allocated to the lumped chemical species of the MOZART mechanism based on the 
updated emission factors. Given this work focuses on the health impacts which are inferred from aerosol sur-
face concentrations, the adopted plume-rise parameterization is expected to have little impact on the estimated 
health burden, as it largely affects the vertical distribution of aerosols, particularly in the upper troposphere43. 
Anthropogenic emissions are updated on a monthly basis using the EDGAR-HTAP V2.044 inventory for 2010, 
which incorporates EDGAR 4.3 global emissions with the Regional Emission inventory in ASia (REAS)45 version 
2.1, where available, on a 0.1° ×​  0.1° grid resolution. The MOZART gas-phase chemistry is coupled with the 
GOCART (Global Ozone Chemistry Aerosol Radiation and Transport)46 bulk aerosol approach to reduce the 
computational cost. The aerosol direct and indirect feedbacks are turned off.

Observations.  Daily observations of Aerosol Optical Depth (AOD) at a wavelength of 550 nm collected by 
the MODerate resolution Imaging Spectroradiometer (MODIS) instruments onboard the Terra and Aqua satel-
lites are used to evaluate model skills in reproducing the spatio-temporal patterns of intense pollution episodes 
associated with fires. Level-2 MODIS Collection-6 data, which have a resolution of 10 ×​ 10 km (at nadir) for both 
Land and Ocean, are used in this study47. In the evaluation, daily values from WRF-Chem are extracted at the 
overpass hour (~10:30 and ~13:30 local solar time for MODIS onboard Terra and Aqua, respectively) and only 
pixels with simultaneous cloud free conditions in both MODIS and the model are considered when making the 
comparison with Taylor diagrams (see Figure S2 and section below on model evaluation for more details).

Simulated particulate matter concentrations are evaluated relative to ground-based measurements over 
Singapore and Sumatra. Hourly [PM2.5] from Singapore are collected by the National Environment Agency (NEA) 
using a Thermo Scientific™​ 5030 SHARP Monitor over five regions (Table S2) during September-November 2015 
and have been accessed from the National Environment Agency website21. Model evaluation is conducted by 
averaging the grid cells that included the five regions defined by NEA. NEA also provides an hourly Pollutant 
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Standards Index (PSI, defined in the next section)21, which was used in this study to evaluate threshold exceed-
ances simulated by the model.

30-min [PM10] measured at Pekanbaru (101.45 E, 0.51 N) in the Riau region using a Met One BAM 1020, 
Real-Time Portable Beta Attenuation Mass Monitor (BAM-1020) were analyzed for the entire simulation period.

For both Singapore and Sumatra, model skill was quantified based on PM hourly and daily means, selecting 
only hours with simultaneous data available between observations and model simulations.

Population data and Pollutant Standards Index (PSI).  Population exposure to degraded air quality 
conditions and premature deaths are estimated based on the 2013 LandScan High Resolution global Population 
Data product that provides population density data gridded with a resolution of 30 arc-seconds (approximately 
1 km at the equator)29. The population density data have been upscaled to match the WRF-Chem grid, averaging 
over cells of size 0.1 degrees over latitude and longitude. The final population data are then obtained by multiply-
ing the population density by each grid cell surface area. The total population over the analyzed domain is ~488 
million people.

Population exposure is quantified based on exceedances of the Pollutant Standards Index (PSI), which allows 
assessment of air quality conditions based on six criteria pollutant concentrations and classifies air quality at dif-
ferent levels (from good to hazardous)21.

The PSI is defined as:

=PSI PSImax( )
(1)p

p

where ∈ .p PM PM SO CO O NO{ , , , , , }2 5 10 2 3 2 , and the PSI for each pollutant p is obtained via linear interpola-
tion of the observed concentration Cp from predefined blocks Cp,b (see Table S4 for their definition):
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Statistical metrics of model performance.  We use Taylor diagrams48 to compare spatial patterns of 
weekly averaged AOD fields from MODIS observations and WRF-Chem simulations. Taylor diagrams provide 
information on the spatial correlation coefficient (R), the Root Mean Squared Difference that is proportional to 
the distance of a point to a reference on the x-axis, and the ratio of spatial standard deviations between observa-
tions and simulated values.

We also assess model performance in reproducing hourly observations of particulate matter concentrations in 
terms of Normalized Mean Bias Fraction (NMBF), which is a symmetric and unbiased metric49:
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where O and M refer to observations and output from WRF-Chem simulations respectively, and O and M are the 
associated means. i and j vary between 1 and the total number of observations/output analyzed. A positive NMFB 
indicates that the model overestimates observations by a factor 1 +​ NMBF, whereas if it is negative WRF-Chem 
underestimates observations by a factor 1-NMBF.

Mortality estimates.  Estimation of all-cause mortality for the overall population due to short-term expo-
sure to increased PM2.5 from fires is performed using simulated surface-level [PM2.5] in combination with an 
exposure-response function31. We calculate the Relative Risk (RR) due to short-term exposure as:

γ= × −RR PM PMexp( ( )) (4)F NF

where PMF and PMNF are the daily PM2.5 concentrations (in μ​g m−3) in the run with fire and no fire emissions 
respectively, and γ is the excess mortality per unit increase in PM2.5. A recent meta-analysis of 110 peer-reviewed 
epidemiological short-term time-series studies of daily mortality and hospital admissions have estimated this 
parameter as 0.00104, with a 95% confidence interval of (0.00052, 0.00156)30. It is important to note that the RR 
meta-analysis by Atkinson et al.30 does not include epidemiological studies from Equatorial Asia since they don’t 
exist and it is mostly based on studies conducted in Europe and in the United States. This implies that short-term 
mortality estimates for Equatorial Asia (independently on the RR functional form adopted) are likely to be con-
servative as based on RR functions developed on lower pollutant levels than those observed in our region. The 
attributable fraction = −AF RR

RR
1 for every cell and every day is then computed, and the total mortality in each 

cell and each day is calculated as:

= × ×M B P AF (5)d tot
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where Bd is the daily, country-specific baseline risk of deaths from noncommunicable diseases (NCD), obtained 
from the 2012 country-specific statistics from the WHO Global Health Observatory50 and Ptot is the total popula-
tion for each grid point from the 2013 LandScan High Resolution global Population Data29.

To estimate premature mortality due to long-term exposure to wildfire PM2.5, we use the integrated 
exposure-response (IER) relationship51 that compiles epidemiological evidence across a wide range of PM con-
centrations from different combustion sources. The IER has been used in a number of recent studies9,52–57 and 
allows for age-dependent calculation of relative risk for five different diseases (RRd) associated with PM2.5 expo-
sure: lower respiratory infections, chronic obstructive pulmonary disease, lung cancer, ischemic heart disease 
and stroke.

We estimated wildfire contribution to premature mortality due to long-term exposure to PM2.5 using the RR 
lookup table and AF function in53:

= −. .AF RR PM RR PM( ) ( ) (6)d d F d NF2 5, 2 5,

where PM2.5,F and PM2.5,NF refer to the annual mean PM2.5 concentrations in μ​g m−3 in the run including fires and 
the control run without fires, respectively. The annual mean for the run including fires was estimated assuming 
that only two months (i.e. September and October) contributed to fire emissions and that November is repre-
sentative of PM concentrations during the months without fires. The total mortality can be then calculated by 
applying Equation 5. Cause-specific background disease rates for the Southeast Asian region are taken from 
Global Burden of Disease 2013 assessment58 for the year 2013 (latest year available), while population age-group 
structures are taken from55 for the year 2010 (latest year available).
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