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Abstract
In September and October 2015, Equatorial Asia experienced the most intense biomass burning
episodes over the past two decades. These events, mostly enhanced by the extremely dry weather
associated with the occurrence of strong El Niño conditions, resulted in the transnational transport of
hazardous pollutants from the originating sources in Indonesian Borneo and Sumatra to the highly
populated Malaysian Peninsula. Quantifying the population exposure form this event is a major
challenge, and only two model-based studies have been performed to date, with limited evaluation
against measurements. This manuscript presents a new data set of 49 monitoring stations across
Peninsular Malaysia and Malaysian Borneo active during the 2015 haze event, and performs the first
comparative study of PM10 (particulate matter with diameter < 10 𝜇m) and carbon monoxide (CO)
against the output of a state-of-the-art regional model (WRF-Chem). WRF-Chem presents high skills
in describing the spatio-temporal patterns of both PM10 and CO and thus was applied to estimate the
impact of the 2015 wildfires on population exposure. This study showed that more than 60% of the
population living in the highly populated region of the Greater Klang Valley was systematically
exposed to unhealthy/hazardous air quality conditions associated with the increased pollutant
concentrations from wildfires and that almost 40% of the Malaysian population was on average
exposed to PM10 concentrations higher than 100 𝜇g m−3 during September and October 2015.

1. Introduction

Equatorial Asia is a region of widespread biomass
burning from multiple sources. These include peat
burning, agricultural fires, centralized waste disposal
and open fugitive waste burning (Nara et al 2011).
Among these sources, wildfires associated with forest
and peat burning resulting from agricultural practices

are some of the most significant (Carlson et al 2012,
Margono et al 2014) and have a prominent seasonality
across the region (van der Werf et al 2010). Emis-
sions from biomass burning are typically loaded with
aerosols and carbon monoxide (CO) (van der Werf
et al 2010, Wiedinmyer et al 2011) and significantly
vary in spatial extent and duration from year-to-year.
These annual variations are in part dependent on
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Figure 1. Locations of PM10 and CO monitoring stations (red dots) used in this study and cities with more than 1 million people
(black squares). In blue are six representative sites (stations number 2, 4, 7, 28, 44 and 49) which are analyzed in detail in this work.
The Greater Klang Valley area (GKV), defined here as being the states of Klang, Petaling, Hulu Langat, Gombak, Sepang and Selangor
combined with the federal states of Kuala Lumpur and Putrajaya, is also highlighted with a darker blue shading in Peninsular Malaysia.

agricultural activities, variation in wildfire distribu-
tions and wider seasonal weather pattern changes
(Field et al 2009, Marlier et al 2013, Siegert et al
2001, van der Werf et al 2008). In this work, we
focus on the fires in the autumn 2015, when the
region experienced a severe draught associated with the
intense El-Niño conditions and subsequent widespread
and uncontrolled wildfires (Tacconi 2016). Over this
period, the burned land in the area was unusually
large compared to previous years: approximately three
times larger than in 2013 and 1.2 larger than in 2014
(figure S1).

Wildfire emissions can be transported for hun-
dreds to thousands of kilometers from the originating
fires and may thus degrade air quality conditions over
highly densely populated areas far away from the
burning regions (See et al 2006). In this work we
focus on Malaysia, a very densely populated region
with 26.4 million people (Bright et al 2014) liv-
ing in an area of approximately 329 000 km2. The
combined population of Kuala Lumpur and Selan-
gor region is reported to be almost 7 million in 2013
(approximately 25% of the total Malaysian popula-
tion) and the population of the Greater Klang Valley
(GKV, figure 1) is expected to reach 10 million by
2020 (PEMANDU 2015). Malaysia experiences recur-
ring haze events annually, most notably during the
dry season when emissions from forest and agricul-
tural fires in Malaysia and Indonesian Sumatra are
transported by south-easterly winds to densely pop-
ulated urban areas such as Kuala Lumpur and the

surrounding GKV (Afroz et al 2003, Azmi et al 2010,
Dominick et al 2012).

Particulate air pollution is widely acknowledged
as one of the most significant global health risks
(Lelieveld et al 2015), estimated to cause approxi-
mately seven million deaths annually (WHO 2012). In
health terms, the poor air quality associated with local
sources as well as with haze events increases occur-
rences of asthmatic episodes and has adverse impacts
on cardiovascular and respiratory diseases in Equato-
rial Asia (Emmanuel 2000, Frankenberg et al 2005,
Sastry 2002). It is therefore of high priority to quantify
the extent of the exposure from major events, such
as the one in autumn 2015. Estimating the health
impacts from population exposure to harmful air
pollutants is challenging because it requires both an
accurate description of spatio-temporal patterns and
trends of air pollutants and robust relationships link-
ing air quality conditions to human morbidity and
mortality. Most literature studies have assessed trends
of population exposure over multiple decades (Brauer
et al 2016, Duncan et al 2014) based on air pollutants
satellite observations. This approach is particularly
effective in regions where no model simulations or
ground-based observations are available, although it
strongly depends on the satellite spatio-temporal cov-
erage, data availability and uncertainties related to the
weak spectral signatures of most pollutants (Dun-
can et al 2014). Satellite observations are thus often
integrated with output from Earth System Models,
including descriptions of atmospheric chemistry as
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well as aerosol dynamics, thereby allowing more
accurate inference of near-surface air pollution
(Lelieveld et al 2015). Recent studies (e.g. the
NERC Coordinated Airborne Studies in the Tropics
(CAST) campaign and the NASA Airborne Tropi-
cal TRopopause EXperiment (ATTREX)) have also
emphasized the need for targeted campaigns as well as
regional scale modeling to accurately capture air qual-
ity patterns and atmospheric chemical composition
in tropical regions. Integrated approaches, including
both direct observations and state-of-the-art model
simulations, are thus required to understand this
heterogeneous, dynamically variable (and sensitive
receptor rich) environment.

To date, two studies have estimated the total pop-
ulation exposure to degraded air quality conditions
and the enhanced premature mortality as a result
of the 2015 wildfires (Crippa et al 2016, Koplitz
et al 2016). In both studies the authors concluded
that those wildfires impacted a large fraction of the
total population living in Equatorial Asia, although
both their exposure and mortality estimates are highly
uncertain. This is mostly due to the very limited obser-
vations publicly available in the area during the haze
episode which prevented a thorough evaluation of
those model output. To overcome these limitations,
in this work we present a new data set consisting of
hourly observations of PM10 and CO concentrations
measured at 49 monitoring stations across Peninsu-
lar Malaysia and Malaysian Borneo during the 2015
wildfires. These hourly observations are used here for
three main purposes: (i) to evaluate simulations of the
Weather Research and Forecasting model with Chem-
istry (WRF-Chem) applied at high spatial and temporal
resolution; (ii) to attribute sources of model bias and
thus to provide insights for improving model setup,
parameterizations and input data (e.g. emissions); (iii)
to quantify the increment in pollutant concentrations
directly attributable to the elevated burning activity in
autumn 2015 and the resulting additional ‘burning’
public exposure in Malaysia. This study emphasizes
the major role played by transnational transport of pol-
lutants from the originating burnings in affecting air
quality and population exposure across Malaysia and
thus the need of a coordinated transnational effort to
plan for mitigation strategies aimed at reducing wild-
fires impacts. Further, results from this work provide
valuable information in identifying the areas mostly
affected by the wildfires and thus can be used by pol-
icy makers to control fire occurrence and better plan
for land-use changes.

2. Methodology

2.1. Study Domain and Data Description
Themonitoringstationsused for this studyareoperated
on behalf of the Malaysian Department of Environ-
ment (DOE) by Alam Sekitar Sendirian Berhad as the

Malaysian Continuous Air Quality Monitoring net-
work. Stations in Peninsular and Bornean Malaysia
were selected based on the availability of PM10 and
CO data for the selected burning and post burning
months (September 1st to November 30th 2015). Dur-
ing this period, 49 stations measured PM10 (12 of
these in Bornean Malaysia) with 40 of these measur-
ing both PM10 and CO (again with 12 of these in
Bornean Malaysia, see figure 1) at hourly resolution.
The stations are classified as residential, industrial,
traffic, background and PM10. The majority (more
than 50%) are identified as residential and are mainly
located at or near roadside sites. The instruments used
for monitoring PM10 and CO across this network
are standardized to follow the equivalence guidelines
set down for monitoring by the US Environmen-
tal Protection Agency. For PM10 this was achieved
either using beta attenuation or tapered element oscil-
lating microbalance instruments. For CO, gas filter
correlation instruments are used across the network.
Simulated spatial patterns are evaluated by comparing
with Aerosol Optical Depth (AOD) and CO satellite
observations. AOD is an indicator of the total aerosol
load in an atmospheric column whereas CO is one of
the main component of biomass burning smoke, both
related to surface PM concentrations associated with
wildfires (see details in the supplementary materials
available at stacks.iop.org/ERL/13/044023/mmedia).

2.2. Model Description
The Weather Research and Forecasting model with
Chemistry (WRF-Chem, Version 3.5, (Grell et al
2005)) was used over the study domain (93 E–137 E;
11S–15 N) with a 10 km resolution in the horizontal
and 51 eta levels in the vertical up to 10 hPa (irregular
levels to better represent the boundary layer). WRF-
Chem is applied at high spatial and temporal resolution
as it was found to add value to the representation
of spatio-temporal patterns of aerosol, meteorologi-
cal and chemical properties compared to analogous
coarser runs (Crippa et al 2017). The simulations cover
the period of September 1st to November 30th 2015 at
hourly resolution, but were aggregated at daily level for
some of the analyses presented in this work. Details on
model setup, including emission data, boundary con-
ditions and parameterizations adopted are described in
the supplementary materials.

2.3. Population Exposure Methods
The Malaysian DOE adopted a revised Air Pollution
Index (API) definition in 1996 modeled on the US
Pollutant Standards Index (PSI) system to assess air
quality conditions. The DOE API system translates
measured concentrations of O3, CO, NO2, SO2 and
PM10 into API bands (0–500) and descriptors (‘Good’
to ‘Hazardous’, table S3). API levels below 100 are con-
sidered ‘safe levels’ and above 100 generally unhealthy.
Individual index values are calculated for each pollu-
tant and the maximum value is then taken forward
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Figure 2. Daily mean (a) PM10 and (b) CO model output including (grey) and excluding (black) fire emissions versus observed data
(red) for two selected sites (site 2 for PM10 and site 28 for CO, as indicated in figure 1).

as the final (single) API value (DOE 2000). Details
on API calculation are provided in the supplementary
materials. Given the less stringent thresholds used as
breakpoints in the API calculation currently adopted
in Malaysia compared to those of developed countries
(i.e. United States, Canada, Europe and United King-
dom), the National University of Malaysia is currently
reviewing the existing API definition for the Malaysian
DOE.

For a comparisonwith model simulations, observa-
tions from the monitoring network are interpolated on
a regular grid identical to that of WRF-Chem via spa-
tial interpolation (kriging, (Cressie 1993)), with higher
weights to closer observations, according to an esti-
mated spatial dependence structure (see section 3.1). In
order to compute population exposure to unhealthy air
quality conditions,wemerged theAPI calculationswith
population data from the 2013 Landscan High Reso-
lution Global Population Dataset (Bright et al 2014).
This data product provides ambient population density
data globally gridded at 30 arc seconds correspond-
ing to approximately 1 km by 1 km at the equator.
This was mapped to the WRF-Chem grid used in this
study (0.1 latitude/longitude degree grid squares) and
population counts were calculated by multiplying the
regridded density data by the grid cell surface area.

3. Results and discussion

3.1. Data-model comparison
WRF-Chem simulations were run for the three month
period of this study and CO and PM10 hourly output
and daily averages were compared with the correspond-
ing observational data from the monitoring sites in
Peninsular and Bornean Malaysia. Figure 2 shows an
example of comparison between WRF-Chem output
(PM10 and CO concentrations) and observed data, for
two different sites (coded as 2 and 28 in figure 1 and
figure S4).

From these plots it is clear that the WRF-Chem
run with fire emissions matches the observed data sig-
nificantly better than the run without fires. Indeed the
product moment correlation coefficient (R) increases
from 0.20–0.76 at site 2 (for PM10) and from 0.16–0.73
at site28(forCO), andespecially inSeptember/October
the model is able to capture the increase in both pollu-
tants markedly better when fire emissions are included.
The overall degree of improvement in R for both PM10
and CO for all sites is shown in figure S5. For PM10,
the median correlation value for the distributions with
no fire emissions included is −0.04 (0.03 for CO)
and with fires included is 0.59 (0.56 for CO). For
both pollutants, the results strongly suggest that the
run with fires matches the observations more closely,
and therefore subsequent analyses and comparisons
will be performed considering only this simulation.
Figure S6 shows the correlation coefficient (R) for
observed and simulated CO (figure S6 (a)–(b)) and
PM10 (figure S6 (c)–(d)) at all the sites. The statisti-
cal behavior in space for the two islands, as apparent
fromthevariograms(not shown), ismarkedlydifferent,
and separate analyses were performed for the differ-
ent islands. The interpolated correlation surface was
obtained using kriging with an exponential variogram
with nugget (Cressie 1993). Correlations in Bornean
Malaysia are markedly more constant (figure S6(b) and
(d)), especially for CO (figure S6(b)), thus the interpo-
lated surface looks almost flat. In Peninsular Malaysia
(figure S6(a) and (c)), there is good agreement in the
simulated CO and PM10, especially in the northeast
region. The correlation coefficient degrades markedly
in the south/south-west, including the GKV and Singa-
pore (refer to figure 1 for their location), with R values
as low as 0.4, thus indicating lower agreement between
WRF-Chem and observations. This may suggest that
local emissions, possibly from anthropogenic sources
neglected or underestimated by the model, may also
significantly impact local air quality conditions.
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The model exhibits different skills in capturing the
magnitude of CO and PM10 concentrations, consis-
tently with the correlation analysis results. During fire
months CO concentrations are underestimated by the
model with larger biases along the southern and west-
ern coastlines of Peninsular Malaysia which are more
populated and urbanized than Bornean Malaysia and
inland of Peninsular Malaysia where smaller biases in
CO occur (figure S7). On the converse, most sites indi-
cate a slightly positive/negative Normalized Mean Bias
Factor (NMBF, see supplementary materials for its
definition) in simulated PM10 concentrations (figure
S7).

To investigate reasons of this spatial variability we
compared hourly data at four selected sites located
in either a predominantly urban (site 4 and 47) or
rural (site 7 and 49) emission context (figure 1). The
magnitude of the bias in PM10 during fire months is
comparable at rural and urban sites (i.e. similar Nor-
malized Mean Absolute Error Factor, NMAEF, defined
in the supplementary materials), although its sign is
variable (i.e. positive and negative NMBF), as also indi-
cated by the comparison of hourly data (figures S8 and
S9 and table S2). Conversely, the analyzed rural sites
show a transition from positive (during fire months)
to highly negative NMBF in the absence of fires (table
S2). This indicates that during non-fire months the
model is not able to accurately capture the background
PM10 concentrations, which may comprise a signif-
icant secondary component (Kim Oanh et al 2006,
Tahir et al 2013) in Equatorial Asia, as also revealed
by the systematic negative bias in the hourly simulated
data (figures S8 and S9). The adopted aerosol scheme
within WRF-Chem indeed includes only a simplified
treatment of secondary aerosol (i.e. without secondary
organic aerosols), due to the computational cost of
running high resolution simulations, and may thus be
responsible for part of the model bias. At the urban sites
the bias is smaller in November, possibly as a result of
the major role played by local primary PM10 emissions
in dictating its atmospheric concentrations.

We further investigate possible sources of model
bias by analyzing the pollutants’ diurnal cycle. Being a
primary pollutant, CO atmospheric concentrations are
mainly dictated by direct emissions and transport phe-
nomena. The bias in simulated CO is larger at urban
thanat rural locations and relativelyunchanged inmag-
nitude over time (table S2). This suggests that some
anthropogenic CO emissions are missing in WRF-
Chem and/or that urban scale pollution events are
not fully captured by a 10 km resolution model run.
Further evidence on the origin of the bias can be
drawnby comparing the diurnal evolution of simulated
and observed CO and PM10 concentrations during
fire and non-fire activity. Observations at the urban
sites indicate a clear diurnal cycle of CO (particularly
during non-fire periods) with concentrations sharply
increasing generally during 6–8 AM (figures S8), as
a result of traffic/rush hour emissions. At rural sites

this behavior is absent (or less marked as at site
49, figure S9). This result thus strongly suggests
that some primary emission sources of CO are not
accounted for in the EDGAR-HTAP emission inven-
tory (Janssens-Maenhout et al 2015). In conclusion,
the analysis of hourly observed and simulated data
indicates that the model may not always accurately cap-
ture variations occurring at fine spatial and temporal
scales, such as urban scale pollution, partly because
of the inaccurate anthropogenic emissions. Detailed
ground-based observations may thus help to inter-
pret model biases and may be possibly used to verify
and improve model input (e.g. by evaluating emission
inventories) as well as to identify the optimal model
setup (e.g. by identifying the key pollution-related
physical-chemical processes that the adopted model
parameterizations should be able to account for).

Wealso evaluatedmodel skills in reproducingAOD
andCOspatial patternsbasedonMODISandMOPITT
data respectively, averaged during the months of
September and October, which are dominated by the
wildfires (figure S10). No sharp gradients are present
between simulated and observed AOD and CO, thus
indicating the model is not affected by a systematic bias
associated with long-range transport (figure S10(c) and
(f)). Further, WRF-Chem underestimates AOD from
MODIS by a factor of 1.3 (Normalized Mean Bias Fac-
tor, NMBF = −0.34 and NMAEF = 0.85) for AOD
whereas it shows high agreement with CO observa-
tions from MOPITT (NMBF = −0.09 and NMAEF =
0.17) during September and October.

To further assess the model ability to capture the
observational records, we compared the average PM10
for September and October derived from the model
output with the interpolated values from the monitor-
ing stations using a kriging with exponential variogram
with nugget. A very good agreement is found in the
Malaysian Peninsula, where WRF-Chem is able to
capture the high concentrations in the GKV and in Sin-
gapore, and the lower values in the north-east regions of
the peninsula (figure 3). The interpolated values from
the monitoring stations are overall smoother than the
simulations, especially inland, where the lack of cover-
age inevitably leads the estimation to be less reliable. In
Bornean Malaysia, both observations (figure 3(b)) and
WRF-Chem (figure 3(d)) do not indicate high PM10
concentrations, especially near the northern coast,
whereas the model simulates higher concentrations
in the south-west (figure 3(d)) as directly account-
ing for wildfire emissions from Indonesian Borneo.
It is possible to interpolate the pollutant concentra-
tions in Indonesian Borneo in principle, but since no
monitoring stations are available in that region, the
reconstructed field would depend on the stations in
Malaysia, which would not be as severely affected by the
fires, and hence would show considerably lower values.
This is apparent from large discrepancy in figure 3(b)
compared to figure 3(d) at the south-west border with
Indonesia. WRF-Chem simulations are instead able to
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Figure 3. Mean PM10 concentrations from (a)–(b) kriging and (c)–(d) simulated by WRF-Chem during September and October in
(a)–(c) the Malaysian Peninsula and in (b)–(d) Malaysian Borneo. The black dots indicate the location of the measuring sites.

capture the extremely high pollutant concentrations in
IndonesianBorneo, as themodelwould input the actual
biomass burning emissions from the entire region.

3.2. Exposure and health impacts
Population exposure to the 2015 pollution episode was
quantified by computing the total population exposed
todifferent levelsofPM10 inSeptemberandOctober. In
figure 4, an exposure comparison in both the Malaysian
Peninsula and Borneo is shown, with threshold val-
ues chosen at 70 100 and 130 𝜇g m−3, all above the
daily WHO limit of 50 𝜇g m−3 (which would result in
the entire Malaysian region being covered). The expo-
suremapsderived fromobservations (figures 4 (a)–(b))
appear to be smoother than the ones from WRF-Chem
(figure 4 (c)–(d)), as already observed in the pollution
maps in figure 3. However, both maps similarly high-
light the GKV as the area mostly affected by pollution,
with similar exposure estimates. Based on WRF-Chem
simulated concentrations, in Peninsular Malaysia we
estimated that 21 million and 12 million people were
exposed to mean PM10 concentrations higher than 70
and 100𝜇g m−3, respectively (figure 4(c)). The esti-
mates based on the observations are instead higher for
the 100𝜇g m−3 threshold (i.e. 16 million people), as a
result of the low station density in the southerly highly
populated areas. In Bornean Malaysia, the comparison
between population exposure based on interpolated
observations and WRF-Chem output shows much
closer total estimates for all three thresholds.

A complete exposure study based only on observa-
tional data is not possible in the context of this work,
as PM10 and CO are insufficient for the calculation
of pollution indices such as the API, which identi-
fies the relative risk from five criteria pollutants (i.e.
CO, O3, NO2, SO2, PM10, see table S3). It is how-
ever possible to compute the API for each day using
WRF-Chem simulated pollutant concentrations and
estimate the number of people persistently exposed to
unhealthy conditions. During the 2015 wildfires, the
simulated unhealthy air quality conditions appear to
be always dictated by the high PM10 concentrations.
Given the agreement between modeled and observed
pollutant concentrations indicated by our model eval-
uation, population exposure to degraded air quality
can be also inferred using spatially interpolated PM10
observations (figure 4 and figure S11). We estimated
that 4.5 million people, mostly concentrated in the
GKV, were exposed to unhealthy air quality condi-
tions on one day in two during September and October
(figure 4). This corresponds to ∼64% of the total pop-
ulation living in the Greater Klang Valley area. The
unhealthy air quality conditions were almost exclu-
sively caused by the increased PM10 concentrations due
to wildfires. Indeed, the normal population exposure
to unhealthy conditions would be only ∼765 000 peo-
ple as derived from API computed in the run without
fire emissions. The currently adopted API definition
is considerably more conservative than the Pollutant
Standards Index formulation adopted by the Singapore
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Figure 4. Population exposure, expressed as millions of people, to different thresholds of mean PM10 concentrations from (a)–(b)
kriging and (c)–(d) simulated by WRF-Chem during September and October in (a)–(c) the Malaysian Peninsula and in (b)–(d)
Malaysian Borneo. The yellow areas indicate regions with PM10 >70 𝜇g m−3, the orange ones those with PM10 > 100 𝜇g m−3 and in
red are those with PM10 > 130𝜇g m−3.

National Environment Agency (NEA 2016), whose
application would lead to almost 18.5 million people
(70% of the Malaysian population) exposed on one day
in two to unhealthy air quality conditions (Crippa et al
2016). Further, when comparing with the WHO guide-
lines for 24 h r PM10 concentrations of 50𝜇g m−3, the
entire Malaysian domain exceeds that threshold on at
least one day in two during September and October,
thus exposing more than 26 million people to PM10
concentrations above the recommended threshold by
WHO. This also indicates the less restrictive pollution
control measures/levels implemented on the regional
scale.

4. Conclusions

This study investigates the impact of the 2015 haze
episode caused by the Indonesian wildfires on air qual-
ity and population exposure in Malaysia, by comparing
a new observational data set including 49 monitoring
sites with two high-resolution regional model simula-
tions. Major findings of this work include:

– The degraded air quality conditions experienced in
autumn 2015 in Malaysia were primarily caused

by transnational pollution transport from wildfires
occurring in Indonesia and other biomass burning,
as indicated by the higher agreement of simulated
pollutant concentrations with observations when the
model is run including fire emissions. However fur-
ther research is required for the same time period
over different years to generalize these findings.

– WRF-Chem, run at high spatial and temporal reso-
lution, presents high skills in reproducing pollutant
concentrations observed at multiple sites in Malaysia
(i.e. R> 0.6 at 45% and 39% of the stations for PM10
and CO, respectively) and therefore can be used to
make robust conclusions on regional air quality and
population exposure.

– Analyses of simulated PM10 concentrations indi-
cate that 10 million people were exposed to mean
concentrations double the daily WHO limit during
September and October 2015.

– Based on WRF-Chem simulations, 64% of the
population living in the Greater Klang Valley was
systematically exposed to unhealthy air quality con-
ditions.

Results from this study provide crucial evidence
that air quality in Malaysia is significantly linked to the
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emissioncontext of thewholeEquatorialAsia and that a
coordinated effort betweenemittingandexposed coun-
tries is essential to improve air quality and to reduce
population exposure (Tacconi 2016). This work has
also shown that the application of a state-of-the-art
regional model at high resolution integrated with a
ground-based observational data can provide unique
and robust information on the spatio-temporal pat-
terns of pollution in Equatorial Asia, which will help
policy makers to identify the most vulnerable areas and
thus plan for coordinated mitigation strategies.
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