76 research outputs found

    Residential Exposure to Traffic and Spontaneous Abortion

    Get PDF

    Seismic response analysis of multiple-frame bridges with unseating restrainers considering ground motion spatial variation and SSI

    Get PDF
    Unseating damages of bridge decks have been observed in many previous major earthquakes due to large relative displacement exceeding the available seat length. Steel cable restrainers are often used to limit such relative displacements. Present restrainer design methods are based on the relative displacements caused by the different dynamic characteristics of adjacent bridge structures. However, the relative displacements in bridge structures are not only caused by different dynamic characteristics of adjacent bridge segments. Recent studies indicated that differential ground motions at supports of bridge piers and Soil Structure Interaction (SSI) could have a significant influence on the relative displacement of adjacent bridge components. Thus the present design methods could significantly underestimate the relative displacement responses of the adjacent bridge components and the stiffness of the restrainers required to limit these displacements. None of the previous investigations considered the effects of spatially varying ground motions in evaluating the adequacy of the restrainers design methods. Moreover, the code recommendation of adjusting the fundamental frequencies of adjacent bridge structures close to each other to mitigate relative displacement induced damages is developed based on the uniform ground motion assumption. Investigations on its effectiveness to mitigate the relative displacement induced damages on the bridge structures subjected to spatially varying ground motion and SSI are made. This paper discusses the effects of spatially varying ground motions and SSI on the responses of the multiple-frame bridges with unseating restrainers through inelastic bridge response analysis

    The Effects of Long-Duration Subduction Earthquakes on Inelastic Behavior of Bridge Pile Foundations Subjected to Liquefaction-Induced Lateral Spreading

    Get PDF
    Effective-stress nonlinear dynamic analyses (NDA) were performed for a large-diameter reinforced concrete (RC) pile in multi-layered liquefiable sloped ground. The objective was to assess the effects of earthquake duration on the combination of inertia and liquefaction-induced lateral spreading. A parametric study was performed using input motions from subduction and crustal earthquakes covering a wide range of motion durations. The NDA results showed that the pile head displacements increased under liquefied conditions, compared to nonliquefied conditions, due to liquefaction-induced lateral spreading. The NDA results were used to develop a displacement-based equivalent static analysis (ESA) method that combines inertial and lateral spreading loads for estimating elastic and inelastic pile demands

    Managed Aquifer Recharge as a Tool to Enhance Sustainable Groundwater Management in California

    Get PDF
    A growing population and an increased demand for water resources have resulted in a global trend of groundwater depletion. Arid and semi-arid climates are particularly susceptible, often relying on groundwater to support large population centers or irrigated agriculture in the absence of sufficient surface water resources. In an effort to increase the security of groundwater resources, managed aquifer recharge (MAR) programs have been developed and implemented globally. MAR is the approach of intentionally harvesting and infiltrating water to recharge depleted aquifer storage. California is a prime example of this growing problem, with three cities that have over a million residents and an agricultural industry that was valued at 47 billion dollars in 2015. The present-day groundwater overdraft of over 100 km3 (since 1962) indicates a clear disparity between surface water supply and water demand within the state. In the face of groundwater overdraft and the anticipated effects of climate change, many new MAR projects are being constructed or investigated throughout California, adding to those that have existed for decades. Some common MAR types utilized in California include injection wells, infiltration basins (also known as spreading basins, percolation basins, or recharge basins), and low-impact development. An emerging MAR type that is actively being investigated is the winter flooding of agricultural fields using existing irrigation infrastructure and excess surface water resources, known as agricultural MAR. California therefore provides an excellent case study to look at the historical use and performance of MAR, ongoing and emerging challenges, novel MAR applications, and the potential for expansion of MAR. Effective MAR projects are an essential tool for increasing groundwater security, both in California and on a global scale. This chapter aims to provide an overview of the most common MAR types and applications within the State of California and neighboring semi-arid regions

    Common Sole Larvae Survive High Levels of Pile-Driving Sound in Controlled Exposure Experiments

    Get PDF
    In view of the rapid extension of offshore wind farms, there is an urgent need to improve our knowledge on possible adverse effects of underwater sound generated by pile-driving. Mortality and injuries have been observed in fish exposed to loud impulse sounds, but knowledge on the sound levels at which (sub-)lethal effects occur is limited for juvenile and adult fish, and virtually non-existent for fish eggs and larvae. A device was developed in which fish larvae can be exposed to underwater sound. It consists of a rigid-walled cylindrical chamber driven by an electro-dynamical sound projector. Samples of up to 100 larvae can be exposed simultaneously to a homogeneously distributed sound pressure and particle velocity field. Recorded pile-driving sounds could be reproduced accurately in the frequency range between 50 and 1000 Hz, at zero to peak pressure levels up to 210 dB re 1µPa2 (zero to peak pressures up to 32 kPa) and single pulse sound exposure levels up to 186 dB re 1µPa2s. The device was used to examine lethal effects of sound exposure in common sole (Solea solea) larvae. Different developmental stages were exposed to various levels and durations of pile-driving sound. The highest cumulative sound exposure level applied was 206 dB re 1µPa2s, which corresponds to 100 strikes at a distance of 100 m from a typical North Sea pile-driving site. The results showed no statistically significant differences in mortality between exposure and control groups at sound exposure levels which were well above the US interim criteria for non-auditory tissue damage in fish. Although our findings cannot be extrapolated to fish larvae in general, as interspecific differences in vulnerability to sound exposure may occur, they do indicate that previous assumptions and criteria may need to be revised
    • …
    corecore