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ABSTRACT 

 

Effective-stress nonlinear dynamic analyses (NDA) were performed for a large-diameter 

reinforced concrete (RC) pile in multi-layered liquefiable sloped ground. The objective was to 

assess the effects of earthquake duration on the combination of inertia and liquefaction-induced 

lateral spreading. A parametric study was performed using input motions from subduction and 

crustal earthquakes covering a wide range of motion durations. The NDA results showed that the 

pile head displacements increased under liquefied conditions, compared to nonliquefied 

conditions, due to liquefaction-induced lateral spreading. The NDA results were used to develop 

a displacement-based equivalent static analysis (ESA) method that combines inertial and lateral 

spreading loads for estimating elastic and inelastic pile demands.  

 

INTRODUCTION 

 

Past earthquakes indicate that liquefaction-induced lateral spreading is a major cause of collapse 

for pile foundations. The design guidelines to combine inertia and liquefaction-induced kinematics 

vary. For example, AASHTO (2014) recommends designing piles for simultaneous effects of 

inertia and lateral spreading only for large magnitude earthquakes (M>8). ASCE/COPRI 61 (2014) 

assumes independent effects of these loads for port facilities, although it recommends evaluating 

this assumption on a project-specific basis. Caltrans (2012) and ODOT (Ashford et al. 2012) 

recommend combining 100% lateral spreading with 50% inertia. WSDOT (2015), on the other 

hand, recommends 100% lateral spreading with 25% inertia. 

The objective of this study was to evaluate the effects of strong motion duration on inelastic 

deformations of piles subjected to combined inertia and liquefaction-induced lateral spreading. 

These effects are particularly important in the Pacific Northwest where the expected magnitude 9 

Cascadia Subduction Zone earthquake is estimated to produce motions with duration as long as 4 

minutes. This paper will, first, present the development of ground motions for two representative 

sites in Oregon with contributions from the Cascadia Subduction Zone (expected to produce long-

duration motions) and crustal sources (expected to produce short-duration motions). Then, the 

development of a 2-D finite-element dynamic model will be presented. The FE model was used in 
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a parametric study to perform nonlinear dynamic analyses (NDA) covering a range of strong 

motion durations. The pile demands from NDA were be used to develop new ESA procedures.  

The approach adopted in this study was to perform NDA to evaluate the accuracy of 

developed ESA procedures. The NDA were performed on a large diameter (2-meter) RC pile under 

liquefied and nonliquefied conditions. The maximum pile head displacement was used as a 

measure of pile performance to compare ESA and NDA results.  

 

NONLINEAR DYNAMIC ANALYSIS (NDA) 

 

Finite-Element (FE) Model. Two-dimensional effective-stress nonlinear dynamic analyses 

(NDA) were performed in OpenSees Finite-Element (FE) software (Mazzoni et al. 2009). As 

shown in Figure 1a, the FE model included three components: (1) A 2-D soil column to simulate 

the free-field site response. The liquefiable sand was modeled using the Pressure-Dependent-

Multi-Yield (PDMY02) constitutive model (Yang et al. 2003). An example of the cyclic response 

of loose sand is shown in Figure 1b; (2) The RC shaft (CIDH pile) was modeled using fiber sections 

and nonlinear-beam-column elements which capture formation of a plastic hinge in the pile as 

shown in Figure 1c; (3) Special soil-pile interface elements (py springs for lateral resistance, tz 

springs for skin friction, and qz springs for end-bearing) were used to connect soil and pile nodes 

together. The soil spring properties were selected based on recommendations of API (2000). The 

strength and stiffness of these springs change in proportion to the excess-pore-water pressure ratio 

in the liquefying soil as shown in Figure 1b. These springs have proven to be effective in capturing 

the first-order effects of liquefaction during dynamic analyses (Brandenberg et al. 2013). More 

details on the FE model and input parameters are provided in Khosravifar et al. (2014a). The 

ground motions were applied as outcrop motions using the compliant-base procedure per Mejia 

and Dawson (2006). 

 
Figure 1. (a) Schematic of the finite-element (FE) model, (b) examples of soil element and soil 

spring cyclic responses in the liquefied layer, (c) example of nonlinear pile response. 
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The subsurface condition analyzed in this study consisted of a typical three-layer profile: a 

5-meter nonliquefying crust with undrained shear strength of Su = 40 kPa, overlying a 3-meter 

loose liquefying sand with (N1)60 = 5, overlying a nonliquefying dense sand with (N1)60 = 35. The 

RC pile was 2 meters in diameter with 20-meter embedment and 5-meter height above the ground. 

The pile head to superstructure connection was free to rotate. The concrete strength was f’c = 44.8 

MPa. The superstructure dead load was 7 MN, corresponding to approximately 5% f’c*Ag.  

The dynamic analyses (NDA) were performed for two conditions: (1) liquefied sloped-

ground condition with 10% slope (α = 0.1), and (2) nonliquefied level-ground condition where 

pore-water pressure generation was precluded.  

 

Ground Motions. Seismic hazard analyses were conducted for two different sites in Oregon, the 

coastal city of Astoria and the downtown region of Portland. Based on the USGS seismic hazard 

deaggregation tool, the seismic hazard in Astoria is almost entirely dominated by the Cascadia 

Subduction Zone (CSZ), while the seismic hazard in Portland is dominated by CSZ and a nearby 

crustal fault known as the Portland Hills Fault (PHF). For each site, two design spectra were 

developed: a 975-year design spectrum per AASHTO (2014) and an MCER spectrum per ASCE 

7-10. The target spectra were developed for site class B/C (Vs30 760 m/s) as input for the site-

specific NDA, and are shown in Figure 2.  

Seven (7) ground motions were selected for each site considering fault mechanism, 

magnitude, shear wave velocity at the recording station, and source to site distance. Each suite of 

seven motions was scaled to collectively match the respective target spectrum. Additionally, the 

selected ground motions for the Portland site were spectrally matched to both target spectra. The 

benefit of spectrally matching motions was that the frequency content of the motions is somewhat 

normalized to the given target spectrum and the significant duration becomes the primary 

differentiator among the input motions. A total of 42 time histories were used in this study. Details 

on ground motions selection, scaling and matching are provided in Nasr (2017). 

 
Figure 2. Target spectra developed for MCER (ASCE 7-10) and 975-year (AASHTO 2014) 

design levels for two sites in Portland and Astoria, OR 
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Representative Results from Nonlinear Dynamic Analyses (NDA) 

 

Figure 3 shows results of NDA from all 42 input motions. The figure compares the maximum pile 

head displacements between liquefied sloped-ground conditions (combined inertia and 

kinematics) and nonliquefied level-ground conditions (inertia only). Pile displacements are larger 

in the liquefied condition compared to the nonliquefied condition which indicates that pile 

displacements cannot be enveloped by merely accounting for the effects of inertia only or lateral 

spreading only. This finding is contrary to the recommendations of MCEER/ATC (2003) that 

suggests designing piles for the envelope of inertia and kinematics separately. These findings are 

aligned with the results of other recent studies, such as Boulanger et al. (2007).  

 

 
Figure 3. Comparison of maximum pile head displacements in liquefied sloped-ground 

versus nonliquefied level-ground conditions from nonlinear dynamic analyses (NDA)  

 

Two cases are selected for further investigation and their dynamic responses are shown in 

Figures 4 and 5. Case A corresponds to 1992 Cape Mendocino EQ (CPM station) which is a crustal 

short-duration motion (D5-95 = 5 sec). Case B corresponds to 2011 Tohoku EQ (MYGH06 station) 

which is a subduction long-duration motion (D5-95 = 77 sec). Both motions were spectrally 

matched to MCER design spectra for the Portland site. Therefore, both motions have similar 

response spectra at rock elevation. The ground surface spectra of the two motions at the natural 

period of the structure (1.3 sec in nonliquefied conditions) are also very similar as shown in Figure 

5. As a result, both motions result in similar maximum pile head displacements in the nonliquefied 

condition (0.15 m in MYGH06 and 0.19 m in CPM). However, the maximum pile head 

displacement in liquefied conditions is increased in the case of MYGH06 (0.27 m) compared to 

CPM (0.22 m). To quantify this increase, we developed the parameter CΔ as defined in Equation 

1 below: 

ΔLiq = ΔLS + CΔ * ΔNonliq  (1) 
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Figure 4. Representative NDA results for 1992 Cape Mendocino EQ CPM Station (short 

duration) and 2011 Tohoku EQ MYGH06 Station (long duration) motions 
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where ΔLiq and ΔNonliq are the pile head displacements in the liquefied condition (combined inertia 

and kinematics) and nonliquefied condition (inertia only) respectively. ΔLS is the pile head 

displacement due to kinematic demands only, which can be estimated by applying soil 

displacements to the end node of p-y springs. We estimated ΔLS to be equal to 0.03 m for CPM 

and 0.04 m for MYGH06. Consequently, the CΔ factor is calculated as 1.5 for MYGH06 (long-

duration) and 1.0 for CPM (short-duration). The larger CΔ implies that the combination of inertia 

and kinematics amplify pile demands. This amplification does not appear to be related to the site 

response, as the ground surface spectra at the natural period of the structure (1.9 sec in liquefied 

condition) are very similar as shown in Figure 5. We attributed this amplification to strong motion 

duration.  

Figure 6 illustrates why inelastic demands are amplified in long-duration motions for piles 

subjected to the combination of inertia and lateral spreading loads. This figure compares moment-

curvature in the plastic hinge for CPM and MYGH06. The incremental yielding in pile (ratcheting) 

increased inelastic demands during the long-duration MYGH06 motion. 

 

 

Figure 5. Input and ground surface spectral accelerations in liquefied and nonliquefied 

conditions for CPM (short duration) and MYGH06 (long duration) motions. 

 

 
Figure 6. Moment-curvature response in the plastic hinge in liquefied and nonliquefied 

conditions for CPM (short duration) and MYGH06 (long duration) motions. 
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PROPOSED EQUIVALENT STATIC ANALYSIS (ESA) 

 

A displacement-based ESA method is proposed here for estimating elastic and inelastic pile 

demands in liquefied conditions. The proposed ESA is similar to the method proposed by 

Khosravifar et al. (2014b) with modifications for long-duration subduction earthquakes. The 

proposed method consists of the following steps: (1) Apply kinematic demands by imposing soil 

displacements to the end-nodes of p-y springs to get ΔLS. Soil displacements can be estimated from 

simplified procedures, e.g. Idriss and Boulanger (2008). Modify the p-y springs in the liquefied 

layer using p-multipliers obtained from Caltrans (2012). (2) Estimate ΔNonliq using ESA for 

nonliquefied conditions (Figure 7a). Estimate the target displacement in the liquefied condition 

(ΔLiq) from Equation 1. (3) Perform ESA by applying soil displacements to the end nodes of p-y 

springs and the target displacement calculated from Equation 1 to the pile head (Figure 7b). The 

pushover curves for liquefied and nonliquefied conditions are shown in Figure 7c. 

 

The Choice of CΔ 

 

The parameter CΔ was back-calculated from the dynamic analyses using Equation 1 and is plotted 

in Figure 8. To account for the uncertainty in estimating ΔNonliq, this parameter was estimated from 

ESA. ΔLS was estimated by statically applying soil displacements to the end nodes of p-y springs 

(i.e. kinematics only). The soil displacements ranged from 0.1 m to 7 m. The pile head 

displacements due to kinematics only (ΔLS) remains constant at 0.04 m for soil displacements 

greater than 0.4 m, corresponding to fully mobilized passive pressure. The mean CΔ is 

approximately 1.3 for subduction earthquakes (interface and intraslab) and 1.15 for shallow crustal 

earthquakes. Khosravifar et al. (2014b) found similar results where the mean CΔ was of 

approximately 1.1 for over 2000 shallow crustal ground motions. Their data are plotted on Figure 

8 to illustrate the scatter in CΔ. 

 

Comparison of Pile Demands Estimated from the Proposed ESA and NDA  

 

Figure 9 shows the comparison of estimated pile demands using the proposed ESA approach with 

those computed from the dynamic analyses (NDA). This comparison provides a measure of 

accuracy for the proposed ESA method. While the ESA results compare reasonably well with the 

NDA results for displacements smaller than 0.4 meter, the ESA estimates become unconservative 

for displacements larger than 0.4 meter. The pile head displacement of 0.4 meter corresponds to 

the ultimate pushover force in the liquefied condition, beyond which pile behavior is inelastic 

(Figure 7c). When the displacements are pushed beyond the ultimate point on the pushover curve, 

the pile behavior becomes very unstable. It is believed that the monotonic nature of the lateral 

spreading force (crust load) combined with large cyclic inertial loads could excessively, and 

irrecoverably deform the pile beyond the yield displacement. While the proposed ESA method 

becomes unconservative for displacements beyond the yield point, this method provides a means 
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to identify deformations beyond which pile response becomes unstable and potentially 

unconservative. For these cases, an equivalent static analysis (ESA) does not accurately predict 

the pile demands and nonlinear dynamic analysis (NDA) is required. 

 

 
Figure 7. (a) Schematic of pushover model for nonliquefied conditions, (b) pushover model 

for liquefied condition, and (c) pushover curves for liquefied and nonliquefied conditions  

 

 
Figure 8. Dependence of CΔ (back-calculated from dynamic analysis) to ground motion 

duration (D5-95) for subduction and shallow crustal earthquakes 
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Figure 9. Comparison of the maximum pile head displacements estimated using the proposed 

ESA method with the NDA results. 

 

CONCLUSIONS 

 

Effective-stress, nonlinear dynamic analyses (NDA) were performed for a 2-meter diameter RC 

pile in multi-layer liquefiable soil in sloped ground. A suite of scaled and matched motions 

covering short to long durations (D5-95 ranges from 4 to 85 sec) were used. The NDA results 

showed that pile demands increase in liquefied conditions compared to nonliquefied conditions 

due to the interaction of inertia and kinematics. An equivalent static analysis (ESA) procedure was 

developed based on target pile head displacements. The procedure specifically addresses 

amplification of inelastic demands in long-duration earthquakes. The proposed ESA compared 

reasonably well against the results of NDA for elastic piles but the accuracy of the method 

decreases as piles enter the inelastic region.  
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