59 research outputs found

    Nest-dwelling ectoparasites reduce begging effort in Pied Flycatcher Ficedula hypoleuca nestlings

    Get PDF
    Parasitized nestlings might be expected to increase begging effort to obtain additional resources to compensate for those sequestered by their parasites. However, begging is costly and chicks harbouring parasites may find it more difficult to attain high begging levels. Consequently, we predicted that, for the same level of nutritional need, nestlings that are parasitized will invest less in begging than those that are not parasitized. We tested this prediction by measuring begging in Pied Flycatcher Ficedula hypoleuca nestlings parasitized with haematophagous mites Dermanyssus gallinoides and Dermanyssus gallinae and blowfly larvae Protocalliphora azurea, and subjected to different levels of food deprivation in order to control for short-term nutritional need. Nestlings from nests with ectoparasites spent less time begging than those from nests without parasites, especially when very hungry, although there was no association with latency to beg or begging intensity. Our results suggest that time invested in begging may indicate not only the level of need, but also nestling parasitism status.Peer Reviewe

    Between-individual variation in nematode burden among juveniles in a wild host:Variation in nematode burdens of juvenile birds

    Get PDF
    Parasite infection in young animals can affect host traits related to demographic processes such as survival and reproduction, and is therefore crucial to population viability. However, variation in infection among juvenile hosts is poorly understood. Experimental studies have indicated that effects of parasitism can vary with host sex, hatching order and hatch date, yet it remains unclear whether this is linked to differences in parasite burdens. We quantified gastrointestinal nematode burdens of wild juvenile European shags (Phalacrocorax aristotelis) using two in situ measures (endoscopy of live birds and necropsy of birds that died naturally) and one non-invasive proxy measure (fecal egg counts (FECs)). In situ methods revealed that almost all chicks were infected (98%), that infections established at an early age and that older chicks hosted more worms, but FECs underestimated prevalence. We found no strong evidence that burdens differed with host sex, rank or hatch date. Heavier chicks had higher burdens, demonstrating that the relationship between burdens and their costs is not straightforward. In situ measures of infection are therefore a valuable tool in building our understanding of the role that parasites play in the dynamics of structured natural populations

    Hierarchical variation in phenotypic flexibility across timescales and associated survival selection shape the dynamics of partial seasonal migration

    Get PDF
    We thank everyone from UK Centre for Ecology & Hydrology and University of Aberdeen (UoA) who contributed to data collection, particularly Hannah Grist and Jenny Sturgeon; NatureScot for access to the Isle of May National Nature Reserve; Scottish Ornithologists' Club (SOC) for their support; and all volunteer observers, particularly Raymond Duncan and Moray Souter. This work was funded by Natural Environment Research Council (NERC; award NE/R000859/1 and award NE/R016429/1 as part of the UK-SCaPE programme delivering National Capability), Norwegian Research Council (SFF-III grant 223257), NTNU, UK Royal Society, Marine Alliance for Science and Technology for Scotland (MASTS), SOC and UoA.Peer reviewedPostprin

    Pronounced long-term trends in year-round diet composition of the European shag Phalacrocorax aristotelis

    Get PDF
    © 2018, Springer-Verlag GmbH Germany, part of Springer Nature. Populations of marine top predators are exhibiting pronounced demographic changes due to alterations in prey availability and quality. Changes in diet composition is a key potential mechanism whereby alterations in prey availability can affect predator demography. Studies of long-term trends in diet have focused on the breeding season. However, long-term changes in non-breeding season diet is an important knowledge gap, since this is generally the most critical period of the year for the demography of marine top predators. In this study, we analysed 495,239 otoliths from 5888 regurgitated pellets collected throughout the annual cycle over three decades (1985–2014) from European shags Phalacrocorax aristotelis on the Isle of May, Scotland (56°11′N, 02°33′W). We identified dramatic reductions in the frequency of lesser sandeel Ammodytes marinus occurrence over the study, which was more pronounced during the non-breeding period (96% in 1988 to 45% in 2014), than the breeding period (91–67%). The relative numerical abundance of sandeel per pellet also reduced markedly (100–13% of all otoliths), with similar trends apparent during breeding and non-breeding periods. In contrast, the frequencies of Gadidae, Cottidae, Pleuronectidae and Gobiidae all increased, resulting in a doubling in annual prey richness from 6 prey types per year in 1988 to 12 in 2014. Our study demonstrates that the declining importance of the previously most prominent prey and marked increase in diet diversity is apparent throughout the annual cycle, suggesting that substantial temporal changes in prey populations have occurred, which may have important implications for seabird population dynamics

    Predicting disease risk areas through co-production of spatial models: the example of Kyasanur Forest Disease in India’s forest landscapes

    Get PDF
    Zoonotic diseases affect resource-poor tropical communities disproportionately, and are linked to human use and modification of ecosystems. Disentangling the socio-ecological mechanisms by which ecosystem change precipitates impacts of pathogens is critical for predicting disease risk and designing effective intervention strategies. Despite the global “One Health” initiative, predictive models for tropical zoonotic diseases often focus on narrow ranges of risk factors and are rarely scaled to intervention programs and ecosystem use. This study uses a participatory, co-production approach to address this disconnect between science, policy and implementation, by developing more informative disease models for a fatal tick-borne viral haemorrhagic disease, Kyasanur Forest Disease (KFD), that is spreading across degraded forest ecosystems in India. We integrated knowledge across disciplines to identify key risk factors and needs with actors and beneficiaries across the relevant policy sectors, to understand disease patterns and develop decision support tools. Human case locations (2014–2018) and spatial machine learning quantified the relative role of risk factors, including forest cover and loss, host densities and public health access, in driving landscape-scale disease patterns in a long-affected district (Shivamogga, Karnataka State). Models combining forest metrics, livestock densities and elevation accurately predicted spatial patterns in human KFD cases (2014–2018). Consistent with suggestions that KFD is an “ecotonal” disease, landscapes at higher risk for human KFD contained diverse forest-plantation mosaics with high coverage of moist evergreen forest and plantation, high indigenous cattle density, and low coverage of dry deciduous forest. Models predicted new hotspots of outbreaks in 2019, indicating their value for spatial targeting of intervention. Co-production was vital for: gathering outbreak data that reflected locations of exposure in the landscape; better understanding contextual socio-ecological risk factors; and tailoring the spatial grain and outputs to the scale of forest use, and public health interventions. We argue this inter-disciplinary approach to risk prediction is applicable across zoonotic diseases in tropical settings

    Widespread environmental contamination with Mycobacterium tuberculosis complex revealed by a molecular detection protocol

    Get PDF
    Environmental contamination with Mycobacterium tuberculosis complex (MTC) has been considered crucial for bovine tuberculosis persistence in multi-host-pathogen systems. However, MTC contamination has been difficult to detect due to methodological issues. In an attempt to overcome this limitation we developed an improved protocol for the detection of MTC DNA. MTC DNA concentration was estimated by the Most Probable Number (MPN) method. Making use of this protocol we showed that MTC contamination is widespread in different types of environmental samples from the Iberian Peninsula, which supports indirect transmission as a contributing mechanism for the maintenance of bovine tuberculosis in this multi-host-pathogen system. The proportion of MTC DNA positive samples was higher in the bovine tuberculosis-infected than in presumed negative area (0.32 and 0.18, respectively). Detection varied with the type of environmental sample and was more frequent in sediment from dams and less frequent in water also from dams (0.22 and 0.05, respectively). The proportion of MTC-positive samples was significantly higher in spring (p<0.001), but MTC DNA concentration per sample was higher in autumn and lower in summer. The average MTC DNA concentration in positive samples was 0.82 MPN/g (CI95 0.70-0.98 MPN/g). We were further able to amplify a DNA sequence specific of Mycobacterium bovis/caprae in 4 environmental samples from the bTB-infected area

    From the animal house to the field : are there consistent individual differences in immunological profile in wild populations of field voles (Microtus agrestis)?

    Get PDF
    Inbred mouse strains, living in simple laboratory environments far removed from nature, have been shown to vary consistently in their immune response. However, wildlife populations are typically outbreeding and face a multiplicity of challenges, parasitological and otherwise. In this study we seek evidence of consistent difference in immunological profile amongst individuals in the wild. We apply a novel method in this context, using longitudinal (repeated capture) data from natural populations of field voles, Microtus agrestis, on a range of life history and infection metrics, and on gene expression levels. We focus on three immune genes, IFN-γ, Gata3, and IL-10, representing respectively the Th1, Th2 and regulatory elements of the immune response. Our results show that there was clear evidence of consistent differences between individuals in their typical level of expression of at least one immune gene, and at most all three immune genes, after other measured sources of variation had been taken into account. Furthermore, individuals that responded to changing circumstances by increasing expression levels of Gata3 had a correlated increase in expression levels of IFN-γ. Our work stresses the importance of acknowledging immunological variation amongst individuals in studies of parasitological and infectious disease risk in wildlife populations
    corecore