581 research outputs found
Nosocomial Wound Infection amongst Post Operative Patients and their Antibiograms at Tertiary Care Hospital in India
Nosocomial infection constitutes a major public health problem worldwide. Increasing antibiotic resistance of pathogens associated with nosocomial infections also becomes a major therapeutic challenge for physicians. Thus, the aim of this study was to identify post operative bacterial infections in the patients developing surgical site infections at a tertiary University hospital in North India during July 2013 to Dec 2013.Methods: One hundred and ninety six swabs/pus specimens from various types of surgical sites suspected to be infected onclinical grounds were processed, by standard methods and antibiotic susceptibility testing of all the isolates was done by usingKirby Baur disc diffusion technique.Results: Of the one hundred and fifty-eight organisms isolated, the most common was Staphylococcus aureus (27.8 %), followedby Escherchia coli (24.05 %), Klebsiella pneumoniae (13.29 %), Pseudomonas aeruginosa (6.32%), Klebsiella oxytoca (5%),Enterococcus (5.6%) and other miscellaneous gram negative rods (9.4%) and Streptococcus pyogenes (1.30%). About 50% of theStaphylococcus aureus isolates were found to be methicillin resistant. In case of Escherichia coli, more than one-third of the isolates were found to be ESBL producers. The resistance to third generation cephalosporins and the quinolone ciprofloxacin was also quite high. Other isolates also showed a very high level of antibiotic resistance.Conclusion: In addition to the economic burden for antibiotic treatment, such infections for multi-resistant organisms are a serious threat to our surgical patients. To prevent these happenings, there is ar urgent need to adopt basic principles of asepsis and sterilization and to make judicious use of prophylactic and therapeutic antibiotics and determine current antimicrobial resistance to commonly prescribed drugs.Keywords: Wound infection; microorganisms; anti-microbial sensitivit
Using the Consolidated Framework for Implementation Research to examine implementation determinants of specialty mental health probation
Background Specialty mental health probation (SMHP) is designed to improve outcomes for the large number of people with serious mental illnesses who are on probation and/or parole. The evidence for specialty mental health probation is promising; however, little is known about the implementation challenges and facilitators associated with SMHP. To address this gap, we used the consolidated framework for implementation research (CFIR) to analyze 26 interviews with stakeholders representing multiple agencies involved in the implementation of SMHP. Results Results indicate a number of challenges and facilitators related to the inner setting, outer setting, implementation process, and characteristics of individuals. Conclusions Findings suggest that complex and cross-sectoral interventions are context-dependent and introduce a number of challenges and facilitators related to multiple CFIR domains. Consequently, agency administrators implementing these types of interventions should consider small pilot studies and develop implementation strategies tailored to the local implementation context
Eight Characteristics of Rigorous Multilevel Implementation Research: A Step-by-Step Guide
Background Although healthcare is delivered in inherently multilevel contexts, implementation science has no widely endorsed methodological standards defining the characteristics of rigorous, multilevel implementation research. We identify and describe eight characteristics of high-quality, multilevel implementation research to encourage discussion, spur debate, and guide decision-making around study design and methodological issues.
Recommendations Implementation researchers who conduct rigorous multilevel implementation research demonstrate the following eight characteristics. First, they map and operationalize the specific multilevel context for defined populations and settings. Second, they define and state the level of each construct under study. Third, they describe how constructs relate to each other within and across levels. Fourth, they specify the temporal scope of each phenomenon at each relevant level. Fifth, they align measurement choices and construction of analytic variables with the levels of theories selected (and hypotheses generated, if applicable). Sixth, they use a sampling strategy consistent with the selected theories or research objectives and sufficiently large and variable to examine relationships at requisite levels. Seventh, they align analytic approaches with the chosen theories (and hypotheses, if applicable), ensuring that they account for measurement dependencies and nested data structures. Eighth, they ensure inferences are made at the appropriate level. To guide implementation researchers and encourage debate, we present the rationale for each characteristic, actionable recommendations for operationalizing the characteristics in implementation research, a range of examples, and references to make the characteristics more usable. Our recommendations apply to all types of multilevel implementation study designs and approaches, including randomized trials, quantitative and qualitative observational studies, and mixed methods.
Conclusion These eight characteristics provide benchmarks for evaluating the quality and replicability of multilevel implementation research and promote a common language and reference points. This, in turn, facilitates knowledge generation across diverse multilevel settings and ensures that implementation research is consistent with (and appropriately leverages) what has already been learned in allied multilevel sciences. When a shared and integrated description of what constitutes rigor is defined and broadly communicated, implementation science is better positioned to innovate both methodologically and theoretically
Effect of the Texel muscling QTL (TM-QTL) on spine characteristics in purebred Texel lambs
Previous work showed that the Texel muscling QTL (TM-QTL) results in pronounced hypertrophy in the loin muscle, with the largest phenotypic effects observed in lambs inheriting a single copy of the allele from the sire. As the loin runs parallel to the spinal vertebrae, and the development of muscle and bone are closely linked, the primary aim of this study was to investigate if there were any subsequent associations between TM-QTL inheritance and underlying spine characteristics (vertebrae number, VN; spine region length, SPL; average length of individual vertebrae, VL) of the thoracic, lumbar, and thoracolumbar spine regions. Spine characteristics were measured from X-ray computed tomography (CT) scans for 142 purebred Texel lambs which had been previously genotyped. Least-squares means were significantly different between genotype groups for lumbar and thoracic VN and lumbar SPL. Similarly for these traits, contrasts were shown to be significant for particular modes of gene action but overall were inconclusive. In general, the results showed little evidence that spine trait phenotypes were associated with differences in loin muscling associated with the different TM-QTL genotypes. © 2013 Published by Elsevier B.V
Obesity resistant mechanisms in the Lean polygenic mouse model as indicated by liver transcriptome and expression of selected genes in skeletal muscle
<p>Abstract</p> <p>Background</p> <p>Divergently selected Lean and Fat mouse lines represent unique models for a polygenic form of resistance and susceptibility to obesity development. Previous research on these lines focused mainly on obesity-susceptible factors in the Fat line. This study aimed to examine the molecular basis of obesity-resistant mechanisms in the Lean line by analyzing various fat depots and organs, the liver transcriptome of selected metabolic pathways, plasma and lipid homeostasis and expression of selected skeletal muscle genes.</p> <p>Results</p> <p>Expression profiling using our custom Steroltalk v2 microarray demonstrated that Lean mice exhibit a higher hepatic expression of cholesterol biosynthesis genes compared to the Fat line, although this was not reflected in elevation of total plasma or liver cholesterol. However, FPLC analysis showed that protective HDL cholesterol was elevated in Lean mice. A significant difference between the strains was also found in bile acid metabolism. Lean mice had a higher expression of <it>Cyp8b1</it>, a regulatory enzyme of bile acid synthesis, and the <it>Abcb11 </it>bile acid transporter gene responsible for export of acids to the bile. Additionally, a higher content of blood circulating bile acids was observed in Lean mice. Elevated HDL and upregulation of some bile acids synthesis and transport genes suggests enhanced reverse cholesterol transport in the Lean line - the flux of cholesterol out of the body is higher which is compensated by upregulation of endogenous cholesterol biosynthesis. Increased skeletal muscle <it>Il6 </it>and <it>Dio2 </it>mRNA levels as well as increased activity of muscle succinic acid dehydrogenase (SDH) in the Lean mice demonstrates for the first time that changes in muscle energy metabolism play important role in the Lean line phenotype determination and corroborate our previous findings of increased physical activity and thermogenesis in this line. Finally, differential expression of <it>Abcb11 </it>and <it>Dio2 </it>identifies novel strong positional candidate genes as they map within the quantitative trait loci (QTL) regions detected previously in crosses between the Lean and Fat mice.</p> <p>Conclusion</p> <p>We identified novel candidate molecular targets and metabolic changes which can at least in part explain resistance to obesity development in the Lean line. The major difference between the Lean and Fat mice was in increased liver cholesterol biosynthesis gene mRNA expression, bile acid metabolism and changes in selected muscle genes' expression in the Lean line. The liver <it>Abcb11 </it>and muscle <it>Dio2 </it>were identified as novel positional candidate genes to explain part of the phenotypic difference between the Lean and Fat lines.</p
Observation of time-reversal violation in the B0 meson system
The individually named authors work collectively as The BABAR Collaboration. Copyright @ 2012 American Physical Society.Although CP violation in the B meson system has been well established by the B factories, there has been no direct observation of time-reversal violation. The decays of entangled neutral B mesons into definite flavor states (B0 or BÂŻÂŻÂŻ0), and J/ÏK0L or ccÂŻK0S final states (referred to as B+ or Bâ), allow comparisons between the probabilities of four pairs of T-conjugated transitions, for example, BÂŻÂŻÂŻ0âBâ and BââBÂŻÂŻÂŻ0, as a function of the time difference between the two B decays. Using 468Ă106 BBÂŻÂŻÂŻ pairs produced in ΄(4S) decays collected by the BABAR detector at SLAC, we measure T-violating parameters in the time evolution of neutral B mesons, yielding ÎS+T=â1.37±0.14(stat)±0.06(syst) and ÎSâT=1.17±0.18(stat)±0.11(syst). These nonzero results represent the first direct observation of T violation through the exchange of initial and final states in transitions that can only be connected by a T-symmetry transformation.DOE and NSF (USA), NSERC (Canada), CEA and CNRS-IN2P3 (France), BMBF and
DFG(Germany), INFN (Italy), FOM (The Netherlands),
NFR (Norway), MES (Russia), MINECO (Spain), STFC
(United Kingdom). Individuals have received support from
the Marie Curie EIF (European Union), the A. P. Sloan
Foundation (USA) and the Binational Science Foundation
(USA-Israel)
Measurement of Branching Fractions and Rate Asymmetries in the Rare Decays B -> K(*) l+ l-
In a sample of 471 million BB events collected with the BABAR detector at the
PEP-II e+e- collider we study the rare decays B -> K(*) l+ l-, where l+ l- is
either e+e- or mu+mu-. We report results on partial branching fractions and
isospin asymmetries in seven bins of di-lepton mass-squared. We further present
CP and lepton-flavor asymmetries for di-lepton masses below and above the J/psi
resonance. We find no evidence for CP or lepton-flavor violation. The partial
branching fractions and isospin asymmetries are consistent with the Standard
Model predictions and with results from other experiments.Comment: 16 pages, 14 figures, accepted by Phys. Rev.
- âŠ