17 research outputs found

    Prdm9, a Major Determinant of Meiotic Recombination Hotspots, Is Not Functional in Dogs and Their Wild Relatives, Wolves and Coyotes

    Get PDF
    Meiotic recombination is a fundamental process needed for the correct segregation of chromosomes during meiosis in sexually reproducing organisms. In humans, 80% of crossovers are estimated to occur at specific areas of the genome called recombination hotspots. Recently, a protein called PRDM9 was identified as a major player in determining the location of genome-wide meiotic recombination hotspots in humans and mice. The origin of this protein seems to be ancient in evolutionary time, as reflected by its fairly conserved structure in lineages that diverged over 700 million years ago. Despite its important role, there are many animal groups in which Prdm9 is absent (e.g. birds, reptiles, amphibians, diptera) and it has been suggested to have disruptive mutations and thus to be a pseudogene in dogs. Because of the dog's history through domestication and artificial selection, we wanted to confirm the presence of a disrupted Prdm9 gene in dogs and determine whether this was exclusive of this species or whether it also occurred in its wild ancestor, the wolf, and in a close relative, the coyote. We sequenced the region in the dog genome that aligned to the last exon of the human Prdm9, containing the entire zinc finger domain, in 4 dogs, 17 wolves and 2 coyotes. Our results show that the three canid species possess mutations that likely make this gene non functional. Because these mutations are shared across the three species, they must have appeared prior to the split of the wolf and the coyote, millions of years ago, and are not related to domestication. In addition, our results suggest that in these three canid species recombination does not occur at hotspots or hotspot location is controlled through a mechanism yet to be determined

    Identification of Genomic Regions Associated with Phenotypic Variation between Dog Breeds using Selection Mapping

    Get PDF
    Peer reviewe

    Unequal Contribution of Sexes in the Origin of Dog Breeds

    No full text
    Dogs (Canis familiaris) were domesticated from the gray wolf (Canis lupus) at least 14,000 years ago, and there is evidence of dogs with phenotypes similar to those in modern breeds 4000 years ago. However, recent genetic analyses have suggested that modern dog breeds have a much more recent origin, probably <200 years ago. To study the origin of contemporaneous breeds we combined the analysis of paternally inherited Y chromosome markers with maternally inherited mitochondrial DNA and biparentally inherited autosomal microsatellite markers in both domestic dogs and their wild ancestor, the gray wolf. Our results show a sex bias in the origin of breeds, with fewer males than females contributing genetically, which clearly differs from the breeding patterns in wild gray wolf populations where both sexes have similar contributions. Furthermore, a comparison of mitochondrial DNA and Y chromosome diversity in dog groups recognized by the World Canine Organization, as well as in groups defined by the breeds' genetic composition, shows that paternal lineages are more differentiated among groups than maternal lineages. This demonstrates a lower exchange of males than of females between breeds belonging to different groups, which illustrates how breed founders may have been chosen

    Unequal contribution of sexes in the origin of dog breeds

    No full text
    Dogs (Canis familiaris) were domesticated from the gray wolf (Canis lupus) at least 14,000 years ago, and there is evidence of dogs with phenotypes similar to those in modern breeds 4000 years ago. However, recent genetic analyses have suggested that modern dog breeds have a much more recent origin, probably <200 years ago. To study the origin of contemporaneous breeds we combined the analysis of paternally inherited Y chromosome markers with maternally inherited mitochondrial DNA and biparentally inherited autosomal microsatellite markers in both domestic dogs and their wild ancestor, the gray wolf. Our results show a sex bias in the origin of breeds, with fewer males than females contributing genetically, which clearly differs from the breeding patterns in wild gray wolf populations where both sexes have similar contributions. Furthermore, a comparison of mitochondrial DNA and Y chromosome diversity in dog groups recognized by the World Canine Organization, as well as in groups defined by the breeds' genetic composition, shows that paternal lineages are more differentiated among groups than maternal lineages. This demonstrates a lower exchange of males than of females between breeds belonging to different groups, which illustrates how breed founders may have been chosen

    Genetic identification of immigrants to the Scandinavian wolf population

    No full text
    Continued gene flow is fundamental to the survival of small, isolated populations. However, geography and human intervention can often act contrary to this requirement. The Scandinavian wolf population is threatened with a loss of genetic variation yet limited in the accessibility to new immigrants by the geographical distance of this peninsular population from its nearest neighbouring population and by human reluctance to allow wolves in the northern reindeer-breeding areas. In this study, we describe the identification of immigrants into this population using autosomal microsatellites, and maternally inherited mtDNA. Samples of 14 wolves collected in the "dispersal corridor" in northern Sweden in 2002-2005 were compared with 185 resident Scandinavian wolves and 79 wolves from the neighbouring Finnish population. We identified four immigrant wolves, suggesting some westward migration, although only one of these is likely to still survive. The integration of such immigrants into the breeding population is necessary to assure the long-term survival of this isolated and inbred population and highlights the importance of genetics techniques to the management of threatened populations

    Self-domestication in Homo sapiens: Insights from comparative genomics

    Get PDF
    publishedVersio
    corecore