174 research outputs found

    Differential display identifies overexpression of the USP36 gene, encoding a deubiquitinating enzyme, in ovarian cancer

    Get PDF
    Objectives. To find potential diagnostic markers or therapeutic targets, we used differential display technique to identify genes that are over or under expressed in human ovarian cancer. Methods. Genes were initially identified by differential display between two human ovarian surface epithelium cultures and two ovarian cancer cell lines, A2780 and Caov-3. Genes were validated by relative quantitative RT-PCR and RNA in situ hybridization. Results. Twenty-eight non-redundant sequences were expressed differentially in the normal ovarian epithelium and ovarian cancer cell lines. Seven of the 28 sequences showed differential expression between normal ovary and ovarian cancer tissue by RT-PCR. USP36 was over-expressed in ovarian cancer cell lines and tissues by RT-PCR and RNA in situ hybridization. Northern blot analysis and RT-PCR revealed two transcripts for USP36 in ovarian tissue. The major transcript was more specific for ovarian cancer and was detected by RT-PCR in 9/9 ovarian cancer tissues, 3/3 cancerous ascites, 5/14 (36%) sera from patients with ovarian cancer, and 0/7 sera from women without ovarian cancer. Conclusion. USP36 is overexpressed in ovarian cancer compared to normal ovary and its transcripts were identified in ascites and serum of ovarian cancer patients

    Prying into the intimate secrets of animal lives; software beyond hardware for comprehensive annotation in ‘Daily Diary’ tags

    Get PDF
    Smart tags attached to freely-roaming animals recording multiple parameters at infra-second rates are becoming commonplace, and are transforming our understanding of the way wild animals operate. However, interpretation of such data is complex and currently limits the ability of biologists to realise the value of their recorded information. This work presents a single program, FRAMEWORK 4, that uses a particular sensor constellation described in the?Daily Diary? tag (recording tri-axial acceleration, tri-axial magnetic field intensity, pressure and e.g. temperature and light intensity) to determine the 4 key elements considered pivotal within the conception of the tag. These are; animal trajectory, behaviour, energy expenditure and quantification of the environment in which the animal operates. The program takes the original data recorded by the Daily Dairy and transforms it into dead-reckoned movements,template-matched behaviours, dynamic body acceleration-derived energetics and positionlinked environmental data before outputting it all into a single file. Biologists are thus left with a single data set where animal actions and environmental conditions can be linked across time and space.Fil: Walker, James S.. Swansea University. College Of Sciences; Reino UnidoFil: Jones, Mark W.. Swansea University. College Of Sciences; Reino UnidoFil: Laramee, Robert S.. Swansea University. College Of Sciences; Reino UnidoFil: Holton, Mark D.. Swansea University; Reino UnidoFil: Shepard, Emily L. C.. Swansea University. College Of Sciences; Reino UnidoFil: Williams, Hannah J.. Swansea University. College Of Sciences; Reino UnidoFil: Scantlebury, D. Michael. The Queens University Of Belfast; IrlandaFil: Marks, Nikki, J.. The Queens University Of Belfast; IrlandaFil: Magowan, Elizabeth A.. The Queens University Of Belfast; IrlandaFil: Maguire, Iain E.. The Queens University Of Belfast; IrlandaFil: Grundy, Ed. Swansea University. College Of Sciences; Reino UnidoFil: Di Virgilio, Agustina Soledad. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Patagonia Norte. Instituto de InvestigaciĂłn En Biodiversidad y Medioambiente; Argentina. Universidad Nacional del Comahue; ArgentinaFil: Wilson, Rory P.. Swansea University. College Of Sciences; Reino Unid

    Recursive Calculation of One-Loop QCD Integral Coefficients

    Full text link
    We present a new procedure using on-shell recursion to determine coefficients of integral functions appearing in one-loop scattering amplitudes of gauge theories, including QCD. With this procedure, coefficients of integrals, including bubbles and triangles, can be determined without resorting to integration. We give criteria for avoiding spurious singularities and boundary terms that would invalidate the recursion. As an example where the criteria are satisfied, we obtain all cut-constructible contributions to the one-loop n-gluon scattering amplitude, A_n^{oneloop}(...--+++...), with split-helicity from an N=1 chiral multiplet and from a complex scalar. Using the supersymmetric decomposition, these are ingredients in the construction of QCD amplitudes with the same helicities. This method requires prior knowledge of amplitudes with sufficiently large numbers of legs as input. In many cases, these are already known in compact forms from the unitarity method.Comment: 36 pages; v2 clarification added and typos fixed, v3 typos fixe

    MHV-Vertices for Gravity Amplitudes

    Full text link
    We obtain a CSW-style formalism for calculating graviton scattering amplitudes and prove its validity through the use of a special type of BCFW-like parameter shift. The procedure is illustrated with explicit examples.Comment: 21 pages, minor typos corrected, proof added in section

    Orbifolding the Twistor String

    Get PDF
    The D-instanton expansion of the topological B-model on the supermanifold CP(3|4) reproduces the perturbative expansion of N=4 Super Yang-Mills theory. In this paper we consider orbifolds in the fermionic directions of CP(3|4). This operation breaks the SU(4) R-symmetry group, reducing the amount of supersymmetry of the gauge theory. As specific examples we take N=1 and N=2 orbifolds and obtain the corresponding superconformal quiver theories. We discuss the D1 instanton expansion in this context and explicitly compute some amplitudes.Comment: 24 pages, 8 figures; v2: minor correction

    Multigluon tree amplitudes with a pair of massive fermions

    Full text link
    We consider the calculation of n-point multigluon tree amplitudes with a pair of massive fermions in QCD. We give the explicit transformation rules of this kind of massive fermion-pair amplitudes with respect to different reference momenta and check the correctness of them by SUSY Ward identities. Using these rules and onshell BCFW recursion relation, we calculate the analytic results of several n-point multigluon amplitudes.Comment: 15page

    MHV Rules for Higgs Plus Multi-Gluon Amplitudes

    Get PDF
    We use tree-level perturbation theory to show how non-supersymmetric one-loop scattering amplitudes for a Higgs boson plus an arbitrary number of partons can be constructed, in the limit of a heavy top quark, from a generalization of the scalar graph approach of Cachazo, Svrcek and Witten. The Higgs boson couples to gluons through a top quark loop which generates, for large top mass, a dimension-5 operator H tr G^2. This effective interaction leads to amplitudes which cannot be described by the standard MHV rules; for example, amplitudes where all of the gluons have positive helicity. We split the effective interaction into the sum of two terms, one holomorphic (selfdual) and one anti-holomorphic (anti-selfdual). The holomorphic interactions give a new set of MHV vertices -- identical in form to those of pure gauge theory, except for momentum conservation -- that can be combined with pure gauge theory MHV vertices to produce a tower of amplitudes with more than two negative helicities. Similarly, the anti-holomorphic interactions give anti-MHV vertices that can be combined with pure gauge theory anti-MHV vertices to produce a tower of amplitudes with more than two positive helicities. A Higgs boson amplitude is the sum of one MHV-tower amplitude and one anti-MHV-tower amplitude. We present all MHV-tower amplitudes with up to four negative-helicity gluons and any number of positive-helicity gluons (NNMHV). These rules reproduce all of the available analytic formulae for Higgs + n-gluon scattering (n<=5) at tree level, in some cases yielding considerably shorter expressions.Comment: 34 pages, 8 figures; v2, references correcte

    The ecology of exercise: mechanisms underlying Individual variation in behavior, activity, and performance: an introduction to symposium

    Get PDF
    Wild animals often engage in intense physical activity while performing tasks vital for their survival and reproduction associated with foraging, avoiding predators, fighting, providing parental care, and migrating. In this theme issue we consider how viewing these tasks as “exercise”—analogous to that performed by human athletes—may help provide insight into the mechanisms underlying individual variation in these types of behaviors and the importance of physical activity in an ecological context. In this article and throughout this issue, we focus on four key questions relevant to the study of behavioral ecology that may be addressed by studying wild animal behavior from the perspective of exercise physiology: (1) How hard do individual animals work in response to ecological (or evolutionary) demands?; (2) Do lab-based studies of activity provide good models for understanding activity in free-living animals and individual variation in traits?; (3) Can animals work too hard during “routine” activities?; and (4) Can paradigms of “exercise” and “training” be applied to free-living animals? Attempts to address these issues are currently being facilitated by rapid technological developments associated with physiological measurements and the remote tracking of wild animals, to provide mechanistic insights into the behavior of free-ranging animals at spatial and temporal scales that were previously impossible. We further suggest that viewing the behaviors of non-human animals in terms of the physical exercise performed will allow us to fully take advantage of these technological advances, draw from knowledge and conceptual frameworks already in use by human exercise physiologists, and identify key traits that constrain performance and generate variation in performance among individuals. It is our hope that, by highlighting mechanisms of behavior and performance, the articles in this issue will spur on further synergies between physiologists and ecologists, to take advantage of emerging cross-disciplinary perspectives and technologies

    Solution to the Ward Identities for Superamplitudes

    Get PDF
    Supersymmetry and R-symmetry Ward identities relate on-shell amplitudes in a supersymmetric field theory. We solve these Ward identities for (Next-to)^K MHV amplitudes of the maximally supersymmetric N=4 and N=8 theories. The resulting superamplitude is written in a new, manifestly supersymmetric and R-invariant form: it is expressed as a sum of very simple SUSY and SU(N)_R-invariant Grassmann polynomials, each multiplied by a "basis amplitude". For (Next-to)^K MHV n-point superamplitudes the number of basis amplitudes is equal to the dimension of the irreducible representation of SU(n-4) corresponding to the rectangular Young diagram with N columns and K rows. The linearly independent amplitudes in this algebraic basis may still be functionally related by permutation of momenta. We show how cyclic and reflection symmetries can be used to obtain a smaller functional basis of color-ordered single-trace amplitudes in N=4 gauge theory. We also analyze the more significant reduction that occurs in N=8 supergravity because gravity amplitudes are not ordered. All results are valid at both tree and loop level.Comment: 29 pages, published versio

    Minimally helicity violating, maximally simple scalar amplitudes in N=4 SYM

    Get PDF
    In planar N=4 SYM we study a particular class of helicity preserving amplitudes. These are scalar amplitudes whose flavor configuration is chosen in such a way that only a limited number of diagrams is allowed, which exhibit an iterative structure. For such amplitudes we evaluate the tree level and one-loop contributions, providing a general formula valid for any number of particles. The ratio between the one-loop and tree level results is a simple combination of dual conformally invariant box functions with at most two massive legs. Along with the MHV and NMHV series, this constitutes the third known infinite sequence of one-loop amplitudes in N=4 SYM.Comment: 22 pages, 7 figures, published versio
    • 

    corecore