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1 Introduction

The evaluation of scattering amplitudes in interacting gauge theories is one of the main

tasks in high-energy particle physics. So far, the most far-reaching results have been ob-

tained for maximally supersymmetric Yang-Mills theory in four dimensions (for a recent

review and a quite exhaustive list of references, see for instance [1]). The development

of new efficient computational techniques, the use of general recursion relations and the

exploitation of the high degree of symmetry of the planar sector of the theory have allowed

the evaluation of scattering amplitudes well beyond the lowest perturbative order for pro-

cesses involving a small number of particles and the determination of compact formulae for

complete series of amplitudes at tree and one loop level.

Up to one loop, a general expression for MHV n-point gluon amplitudes has been

given in [2, 3], whereas a complete result for NMHV n-point gluon amplitudes can be

found in [4, 5]. General results for NMHV amplitudes involving gluinos and scalars have

been derived in [6, 7]. For split-helicity gluon amplitudes a general expression valid for any

number of particles has been determined at tree level [8].

N = 4 supersymmetry can be exploited for constructing a superamplitude [9–11],

which in its expansion in the superspace Grassmannian variables contains all the compo-

nent amplitudes corresponding to all possible configurations of external particles (gluons,

fermions and scalars) and all possible configurations of helicities. So far, the complete

n-point superamplitude has been constructed at tree level [12] and results at one-loop ex-

ist for MHV [10, 13] and NMHV [11, 14] n-points superamplitudes. Beyond one loop,

integrands for MHV and NMHV n-points superamplitudes have been given in [15, 16].
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In this paper we determine a new general iterating formula for one loop corrections to

a particular class of color ordered amplitudes. These are purely scalar amplitudes where

the external chiralities and flavors are chosen in such a way that at tree level only one

diagram contributes, so making its direct computation very easy (this was first noticed

in [17]). Using N = 1 superspace formalism, this simplicity carries over at loop level

where the few diagrams contributing can be obtained from the tree level one by repeated

insertion of simple building blocks. This allows for a direct determination of the general

one-loop correction for any number of external scalar particles. The general result is given

in eq. (4.17) in terms of one-mass, two-mass easy and two-mass hard scalar box functions.

Along with the MHV and NMHV series, this constitutes the third known infinite series of

one-loop amplitudes in N = 4 SYM.

The plan of the paper is as follows: in section 2 we introduce the class of simple

scalar amplitudes, reinterpreting them in a manifestly N = 1 supersymmetric setup. In

section 3 we rederive the tree level results of [17] in our formalism. In section 4 we present

the new computation at one loop. We first compute explicitly the simplest four and six

point amplitudes, showing how the well known expression for the corresponding N = 4

superamplitudes may be rediscovered from this different perspective. Then we generalize

the result to an arbitrary number of external scalars and perform a non-trivial check of its

correctness by comparing its IR behavior with the expected universal structure.

2 The simplest scalar amplitudes

We consider the scattering of n scalar particles in N = 4 SYM theory, in the large N limit.

In the following we always understand color ordering and deal with partial amplitudes.

The theory contains six real scalar fields φi transforming in the vector representation

of the SO(6)R R-symmetry group and in the adjoint representation of the gauge group

SU(N). They interact with the gluons of the gauge sector, with the four fermions through

Yukawa interactions, and among themselves by a quartic scalar potential. Hence scattering

processes involve in principle many contributions from all these interactions, making their

traditional perturbative evaluation quite unfeasible.

However, as noticed in [17], there exist a particular class of scalar amplitudes that at

tree level receive contributions from a single Feynman diagram. These are amplitudes where

the order of the external scalar particles has been chosen in such a way that no two adjacent

ones share the same SO(6)R index. The only planar tree level diagram contributing to this

color ordered amplitude is just a chain of scalar quartic vertices, as shown in figure 1, and

then it is very easy to compute.

In a manifestlyN = 4 superspace formalism, on-shell states can be organized in a single

chiral superfield, according to the following expansion in powers of the four Grassmannian

coordinates ηA

Φ(p, η) = G+(p) + ηA ΓA(p) +
1

2
ηA ηB SAB(p) +

1

3!
ηA ηB ηC ǫABCD Γ̄D(p)

+
1

4!
ηA ηB ηC ηD ǫABCD G−(p) . (2.1)
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φ1 (p1)

φ2 (pm+3)

φ1 (pm+1)

φ2 (p2m)

φ2 (p2) φ3 (p3) φ2 (pm−1)

φ3 (pm+2)

φ3 (pm)

φ3 (p2m−1)

Figure 1. Example of scalar amplitude at tree level in component formalism.

Here, G±(p) are the two helicity states for gluons and ΓA, Γ̄
A the two fermionic states.

Introducing S̃AB ≡ 1
2 ǫ

ABCDSCD the scalars satisfy the reality condition (SAB) = S̃AB,

and the components of the SAB, S̃
AB antisymmetric tensors are identified with the scalars

carrying SO(6) index, according to

S1,i+1 = φi − i φi+3

S̃1,i+1 = φi + i φi+3 , i = 1, 2, 3 . (2.2)

In this language, an n-point superamplitude can be constructed from the vacuum expecta-

tion value of a string of n Φ(p, η) superfields. On-shell conservation laws, ordinary super-

conformal invariance and dual superconformal covariance constrain it to be of the form [11]

A(Φ1, . . . ,Φn) = AMHV
n Pn , (2.3)

where Pn is a polynomial in the SU(4)R singlet η4 ≡ 1
4!ǫABCDη

AηBηCηD, which is dual

superconformal invariant. We write

Pn = 1 + PNMHV
n + PN2MHV

n + . . . PNkMHV
n + . . . + PMHV

n , (2.4)

where each term is homogeneous in η4 with deg(PNkMHV
n ) = 4k and k = 0, · · · , n −

4. According to the particular value of k we obtain a different kind of ratio function

ANkMHV
n /AMHV

n , ranging from the MHV to the MHV-conjugate cases.

We remind that at tree level

AMHV
n,tree =

δ4(p)δ8(q)

〈12〉 . . . 〈n1〉
. (2.5)

From this general construction it is easy to realize that purely scalar amplitudes only

occur for an even number of external particles and they always correspond to helicity-

preserving (or “minimally violating”) amplitudes. In fact, since each scalar component

SAB is associated to a pair of Grassmannian variables, in order to ensure SU(4) invariance,

it has to enter the amplitude together with its conjugate S̃AB. This gives rise to amplitudes

with the same number of S and S̃ fields.

As a consequence, the spectrum of purely scalar amplitudes does not fill the whole ex-

pansion (2.4). For fixed n ≡ 2m, a purely scalar amplitude will appear only in PN(m−2)MHV
2m .

This corresponds to having a MHV amplitude at four points, a NMHV amplitude at six
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Y (p1)

X (p2m) X (p2m−1) X (pm+3) X (pm+2)

X (p2) X (p3) X (pm−1) X (pm)

Y (pm+1)
D2

D
2

D2 D2
D

2
D

2

Figure 2. The single diagram contributing to the tree-level amplitude in N = 1 formalism.

points, a N2MHV at eight points and so on and so forth, according to a pattern that strictly

resembles the one of three-dimensional ABJM-type theories [18].

In order to evaluate perturbatively scattering amplitudes, it is worth using N = 1

superspace formalism.

We embed the scalar fields into 3 complex chiral superfields X, Y and Z, whose

dynamics together with the one for the vector superfield, is described by the action (A.7). In

terms of the scalars carrying a SO(6) index and the ones in the antisymmetric representation

of SU(4), we make the specific identification

X ≡ φ1 + iφ4 = S̃12 , X̄ ≡ φ1 − iφ4 = S12

Y ≡ φ2 + iφ5 = S̃13 , Ȳ ≡ φ2 − iφ5 = S13

Z ≡ φ3 + iφ6 = S̃14 , Z̄ ≡ φ3 − iφ6 = S14 (2.6)

N = 1 superamplitudes will be extracted from contributions to the effective action corre-

sponding to strings of chiral and antichiral superfields.

We choose to concentrate on the particular set of superamplitudes

A2m(Y1X2 · · ·Xm Ȳm+1X̄m+2 · · · X̄2m) , (2.7)

which at tree level receive a single planar contribution corresponding to a string of cubic

superpotential vertices (see figure 2). The absence of other typologies of planar diagrams

is due to the fact that no adjacent superfields appear with the same flavor and opposite

chirality. This is the way the condition for having a single diagram at tree level works in

N = 1 language. Other alternative choices of flavors are related to this one by SU(3)R
R-symmetry transformations, so we can focus on these particular superamplitudes without

loosing generality.

Superamplitudes (2.7) belong to the class of the so-called split-helicity amplitudes.

They are invariant under reflection

A2m(Y1 · · ·Xm Ȳm+1 · · · X̄2m) = A2m(X̄2m · · · Ȳm+1Xm · · ·Y1) (2.8)

and under parity transformations, which exchange chiral with antichiral superfields

A2m(Y1 · · ·Xm Ȳm+1 · · · X̄2m) = A2m(Ȳ1 · · · X̄m Ym+1 · · ·X2m) . (2.9)
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By direct inspection of the symmetries of the corresponding Feynman diagrams they turn

out to be invariant also under the following Z2 symmetries

A2m(Y1X2 · · ·Xm Ȳm+1 X̄m+2 · · · X̄2m) = A2m(Y1X2m · · ·Xm+2 Ȳm+1 X̄m · · · X̄2)

A2m(Y1X2 · · ·Xm Ȳm+1 X̄m+2 · · · X̄2m) = A2m(Ym+1Xm · · ·X2 Ȳ1 X̄2m · · · X̄m+2) .

(2.10)

In the next sections we perform the one-loop evaluation of these amplitudes for an

arbitrary number of external particles. Using N = 1 superspace formalism has the advan-

tage to involve a smaller number of diagrams compared to the calculation in components.

Moreover, from the final expression of (2.7) we could extract not only the purely scalar

amplitude we are interested in, but other sets of amplitudes involving matter fermions.

The same strategy of computing amplitudes that at tree level involve only superpo-

tential interactions was successfully used in [19, 20] for determining diagrammatically the

two-loop correction to the four point superamplitude in ABJ(M) and in [21] for the six-

point superamplitude at one loop.

3 Tree level

Given the particular configuration of the n = 2m external fields (2.7), at tree level and in

the planar limit these N = 1 superamplitudes receive one single contribution corresponding

to the diagram depicted in figure 2.

The result is easily worked out by performing the D-algebra on the supergraph. This

amounts to integrating by parts the spinorial derivatives on the external fields in order to

obtain an expression local in the spinorial variables. This results in several terms which

can be collected in the following compact expression

Γ
(0)
2m =

(ig)2m−2

P

∫

d4 θ Y (p1)X(p2)

(
m−2∏

i=1

X̄(p2m−i+1)D
2X(pi+2)D

2

)

Ȳ (pm+1) X̄(pm+2) ,

(3.1)

where P comes from the product of the propagators (see appendix B for notations on

momentum invariants)

P = p2m+1,m+2

m−2∏

i=1

p22m−i+2;2i p
2
2m−i+1;1+2i . (3.2)

Integrating on the θ-variable, distributing the spinorial derivatives in all possible ways on

the superfields and introducing polarization spinors for fermions we may obtain all the

component amplitudes.

The purely scalar component is extracted by applying the spinorial derivatives in such

a way that they always appear in even number on a given superfield. Using the on-shell

conditions

D2X = D̄2X̄ = 0 , D̄α̇DαX(p) = pαα̇X(p) , DαD̄α̇X̄(p) = pαα̇ X̄(p) , (3.3)
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and similarly for Y , all spinorial derivatives get converted to external momenta and give

rise to a numerator expressed in terms of momentum invariants

m−1∏

i=1

(
−p22−i;2i

)
. (3.4)

Labeling the internal momenta in figure 2 from the leftmost chiral vertex up to its analogue

at the opposite end, it is easy to see that this product cancels all internal propagators at

odd sites, leaving the final expression for the tree level scalar amplitude

A
(0)
2m = g2m−2

m−2∏

i=1

1

p22m−i+1; 2i+1

(3.5)

that agrees with the result found in [17].

The simplest case corresponds to m = 2, which gives a constant for the tree-level

scattering of four scalar particles. Comparing with the Parke-Taylor gluon amplitude, the

MHV denominator
∏4

i=1 〈i, i+1〉 is not present, as can be ascertained solving super Ward

identities. Alternatively, this can be understood by extracting the particular scalar ampli-

tude we are considering from the general expression of the 4pt N = 4 superamplitude (2.5)

where P4 = 1. According to the field identification (2.6), our 4pt scalar amplitude corre-

sponds to the η41η
2
1η

3
2η

4
2η

1
3η

3
3η

1
4η

2
4 component. Extracting this term from the fermionic delta

function δ(8)(q) = 1
24
∏4

A=1

∑

i,j 〈i, j〉 η
A
i ηj A it is immediate to recognize the emergence of

a factor −〈12〉〈23〉〈34〉〈41〉, which cancels the MHV denominator in the superamplitude,

so leading to a constant.

For m = 3 we obtain the amplitude for six scalars

A
(0)
6 =

g4

p26;3
. (3.6)

Again, we checked that this coincides with the η41η
2
1η

3
2η

4
2η

3
3η

4
3η

1
4η

3
4η

1
5η

2
5η

1
6η

2
6 component of the

N = 4 superamplitude (2.5) with P6 = PNMHV
6,tree [11]. In the notations of [11] this component

receives contributions only from the R1;36 R-invariant (see eq. (6.17) in that paper).

4 One-loop

In this section we compute the one-loop correction to the process (2.7). In the planar

limit all one-loop diagrams are order λ ≡ g2N compared to the tree level counterpart. We

evaluate the ratio M
(1)
2m defined as

A2m = A
(0)
2m

(

1 + λ cΓM
(1)
2m +O

(
λ2
))

, (4.1)

where cΓ is the customary factor as defined in appendix B (see eq. (B.9)).

In the large N limit, and taking into account that one-loop corrections to chiral prop-

agators vanish, the relevant supergraphs are obtained from the tree level one by adding

one vector propagator joining two chiral lines in all possible planar ways. The corrections

can be schematically drawn as in figure 3. We sketch the calculation for the 4pt and 6pt

amplitudes before concentrating on the general npt case.
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(a)

(c) (d)

(b)

Figure 3. Building-block diagrams contributing at one-loop.

p1

p2

p3

p4

Figure 4. The two types of diagram contributing to the one-loop four-point amplitude. Two more

are obtained by acting with parity transformation on these ones.

4.1 Four-points and six-points

At one loop, the scattering of four chiral superfields

A4(Y (1)X(2) Ȳ (3)X̄(4)) (4.2)

involves only the two supergraphs shown in figure 4.

Performing the D-algebra they give rise to ordinary momentum integrals corresponding

to triangle and box diagrams. We regularize IR divergences by dimensional regularization.

The notations and the results for the integrals are listed in the appendix B, and follow [3],

up to a different normalization factor.

Focusing on the purely scalar component and taking into account permutations and

overall factors (we omit only an overall 1/(4π)2−ǫ which we restore in the final result), the

contributions from the two diagrams read

(a) = −2 s I1m3;1 ×A
(0)
4

(b) =

[

s I1m3;1 + pαα̇4 p1βα̇ p
ββ̇
2

∫
d4−2ǫk

(2π)4−2ǫ

kαβ̇
k2(k + p4)2(k + p41)2(k + p4;3)2

+

+ (p1 ↔ p3 , p2 ↔ p4)

]

× A
(0)
4 . (4.3)
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Using trace formulae (A.4), they sum up to

M
(1)
4 = −

s t

(4π)2−ǫ
I0m4 . (4.4)

As expected, the contributions corresponding to triangle integrals cancel against opposite

contributions from the box-like ones, leaving a massless box, according to the well-known

result for the 4pt gluon amplitude [22]–[24].

At six points we want to compute the amplitude

A6(Y (1)X(2)X(3) Ȳ (4)X̄(5)X̄(6)) . (4.5)

The actual contribution to the six-point N = 1 superamplitude is given by diagrams in

figure 5 plus their parity duals, obtained by exchanging pi ↔ p3+i. The diagrams have

been grouped according to the number of propagators flowing inside the loop. Compared

to the four-point case, a new kind of diagram appears, which formally leads to a pentagon

integral (see figure 5(g)).

After performing D-algebra, graphs of the type 5(a),(b),(c) give rise to triangle-like

integrals. The first one and its dual correspond to one-mass triangle integrals, whereas the

others give rise to two-mass triangle integrals. Precisely,

(a) = −
p212
p26;3

I1m3: 1 , (b) = −I2m3: 2;1 , (c) = −
p212
p26;3

I2m3: 2;1 (4.6)

and similarly for the dual ones.

Concerning supergraphs with four loop propagators, the D-algebra works differently

for diagrams 5(d),(e) compared to diagram 5(f). In all cases we obtain a triangle and a

vector box-like integral, but given the different configuration of spinorial derivatives that

survive on the external fields, in the former two diagrams both integrals contribute to the

scalar part of the amplitude, whereas in the latter one only the term proportional to the

triangle integral survives. Precisely, these diagrams give

(d) =
p212
p26;3

I1m3: 1 +
1

p26;3

∫
d4−2ǫk

(2π)4−2ǫ

Tr (p6 p1 p2 k)

k2(k + p6)2(k + p16)2(k + p6;3)2

(e) =
p212
p26;3

I2m3: 2;1 −
1

p26;3

∫
d4−2ǫk

(2π)4−2ǫ

Tr (p6 p1 p2 k)

k2(k − p1)2(k − p61)2(k + p2)2

(f) = I2m3: 2;1 . (4.7)

A similar result holds for their parity duals.

If we now sum diagrams 5(a)–5(f) it is easy to realize that the triangle integrals

cancel pairwise, while for the two vector box-like integrals a suitable change of integration

variables allows them to be paired. Working out the traces at numerator we eventually

obtain a scalar box integral with one massive leg

(a) + (b) + (c) + (d) + (e) + (f) = −
p212 p

2
16

p26;3
I1m4: 3 . (4.8)
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p1 p4

p2 p3

p5p6

(a) (b)

(c) (d)

(e) (f)

(g)

Figure 5. Types of diagrams contributing to the six-point one-loop amplitude. Seven more dia-

grams are obtained by acting with parity transformation on these ones.

Finally, there are the new diagrams with five loop propagators as in figure 5(g), which,

nevertheless, can be easily solved. The nice outcome of the D-algebra decomposition is that

only two-mass hard box integrals contribute to the scalar component of the amplitude, e.g.

(g) = −p223 I
2mh
4: 2;4 . (4.9)

Combining (4.8), (4.9) and their parity duals, inserting the appropriate color and com-

binatorial factors and employing the dual conformally invariant [25] scalar box functions

F [3] defined in (B.8), the one-loop correction at six points divided by the tree level am-

plitude (3.6) reads

M
(1)
6 = 2F 1m

6: 3 + 2F 1m
6: 6 + 2F 2mh

6: 2;4 + 2F 2mh
6: 2;1 . (4.10)
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The involved integrals have been computed long ago and an explicit evaluation of (4.10)

can be found for instance in [11].

The expression (4.10) is perfectly consistent with the result for the NMHV six-point

gluon amplitude found in [3], where using unitarity cuts it was proved that the coefficient

of the two-mass easy box integral, which might potentially be present, is actually zero.

Given the constraints imposed on the superamplitude by dual superconformal invariance,

our procedure provides a simple diagrammatic explanation of that finding, being it an

immediate consequence of the structure of the supergraphs and the way D-algebra works

on them. In fact, the only diagrams in figure 5 which might give rise to a two-mass easy box

integral are diagrams (f) and (g), but the corresponding superfield configurations arising

from D-algebra never produce purely scalar terms.

At six points, the one-loop PNMHV
6 ratio in (2.4) can be expressed as a sum over R-

invariants, dressed by a function V of the three conformal cross-ratios [11] (see also [26]).

Our result (4.10) divided by PMHV
6 coincides with the function V

(3)
6 correcting the R1;36

invariant at one loop (see eq. (5.26) of ref. [11]).

For the two simple cases of MHV four-point and NMHV six-point amplitudes, one

could have determined the exact expression of the ratios PMHV
4 and PNMHV

6 at one loop

simply computing the corresponding purely scalar amplitudes and combining the result

with the dual superconformally invariant ansatz for the superamplitude. Unfortunately,

this is not possible any longer starting from the eight-point N2MHV amplitudes, as we will

highlight in the next section.

4.2 n-points

The experience gained in the evaluation of the previous simple cases, can be used for

generalizing the one-loop calculation to n = 2m external scalar particles. This can be easily

accomplished, as no new typologies of diagrams emerge compared to the six-point case.

The most efficient way to perform the calculation is to evaluate building blocks in

figure 3 and sum over all possible block insertions inside a 2m-leg diagram.

The expected cancellation of triangle integrals suggests the way to conveniently group

the diagrams in order to have triangles disappearing already at an intermediate stage.

From a case by case analysis it is immediate to realize that triangle integrals from triangle-

like diagrams 3(a) and those coming from the D-algebra reduction of box-like ones 3(b)

cancel pairwise, leaving boxes only. As for six-point case, building block 6(c) turns out

to contribute to the purely scalar component of the amplitude only with a triangle-like

integral, which cancels a contribution from a genuine triangle diagram. In conclusion, only

building block diagrams in figure 6 truly contribute with box-like integrals.

From the insertion of blocks 3(a) and 3(b) inside the tree level diagram, vector two-mass

easy box integrals are obtained

(a) = +A
(0)
2m ×

∫
d4−2ǫk

(2π)4−2ǫ

Tr (p2m+2−i p2m+3−i;2i−3 pi k)

k2(k + p2m+2−i)2(k + p2m+2−i;2i−2)2(k + p2m+2−i;2i−1)2

(b) = −A
(0)
2m ×

∫
d4−2ǫk

(2π)4−2ǫ

Tr (p2m+2−i p2m+3−i;2i−3 pi k)

k2(k − p2m+3−i;2i−3)2(k − p2m+2−i;2i−2)2(k + pi)2
. (4.11)
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pi

p2m+2−i

pL pR

pi

p2m+2−i

pi

p2m+2−i

pL pR

p2m+3−i

pL pR pL pR

pi pi+1

p2m+2−i

(a) (b)

(c) (d)

Figure 6. Relevant diagrams contributing to the 2m-point one-loop scalar amplitude.

For any value i = 3, · · · ,m − 1, for m ≥ 4, summing these contributions the vector part

cancels and we are left with a scalar two-mass easy box

(a) + (b) = −
(
p22m+2−i;2i−2 p

2
2m+3−i;2i−2 − p22m+3−i;2i−3 p

2
i+1;2m−2i+1

)
A

(0)
2m I2me

4: 2m−2i+1;i+1 .

(4.12)

When the insertion of blocks (a) and (b) happens at the edges of the tree level graph, that

is i = 2 and i = m in figure 6, one more external momentum becomes massless and we

obtain one-mass integrals. For instance, for i = 2 we have

(a)
∣
∣
i=2

= +A
(0)
2m ×

∫
d4−2ǫk

(2π)4−2ǫ

Tr (p2m p1 p2 k)

k2(k + p2m)2(k + p2m,1)2(k + p2m;3)2

(b)
∣
∣
i=2

= −A
(0)
2m ×

∫
d4−2ǫk

(2π)4−2ǫ

Tr (p2m p1 p2 k)

k2(k − p1)2(k − p2m,1)2(k + p2)2
. (4.13)

As above, these combine pairwise leaving the one-mass scalar box contribution

(a) + (b) = −p212 p
2
2m,1A

(0)
2m I1m4: 3 . (4.14)

The two analogous diagrams at the opposite corner are worked out in the same fashion.

In addition, there are other two-mass hard scalar box integrals coming from

blocks 6(c) and 6(d), which have to be summed over the insertion leg i. Explicitly, af-

ter a straightforward generalization of how to work out D-algebra and extract the scalar
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part (which is spelled out in appendix C), the corresponding contributions to the purely

scalar component read

(c) = −p2i,i+1 p2i+1;2m−2i+1 A
(0)
2m × I2mh

4: 2m−2i;i+2

(d) = −p22m−i+2,2m−i+3 p22m−i+3;2i−3 A
(0)
2m × I2mh

4: 2i−4;2m−i+4 . (4.15)

Summing up all contributions with the relative factors, dividing by the tree level

amplitude (3.5) and expressing the integrals in terms of the F scalar box functions, the

final answer reads

M
(1)
2m = 2F 1m

2m: 3 + 2F 1m
2m:m+3 + 2

m−1∑

i=3

F 2me
2m: 2m−2i+1 ; i+1

+ 2
m∑

i=3

F 2mh
2m: 2i−4 ; 2m−i+4 + 2

m−1∑

i=2

F 2mh
2m: 2m−2i ; i+2 . (4.16)

Including the one-mass box functions into the sum of the two-mass easy, and relabeling

indices in the second sum, we can rewrite the ratio M
(1)
2m as

M
(1)
2m = 2

m∑

i=2

F 2me
2m: 2m−2i+1 ; i+1 + 2

m−1∑

i=2

(

F 2mh
2m: 2m−2i ; i+2+m + F 2mh

2m: 2m−2i ; i+2

)

. (4.17)

This is the main result of the paper. As explained above, the sums are performed over the

insertion position of the blocks in figure 6, translating into different momenta entering the

legs of the scalar box functions. Again these box diagrams are only one-mass and two-mass

easy and hard, and the summation over the massless external legs is a straightforward gen-

eralization of the six-point result. Dual conformal invariance, as well as parity invariance,

are manifest in (4.17).

The occurrence of box integrals with at most two massive legs makes it evident that

this set of scalar amplitudes is not sufficient for determining the whole Nm−2MHV super-

amplitude. In fact, already at eight points, N2MHV gluonic amplitudes contain four-mass

box integrals [27], which are not present in the scalar sector. This is consistent with the

obvious expectation that for m increasing more and more components will be needed to fix

2m-point superamplitudes. Our one-loop findings may offer one constraint for determining

the complete Nm−2MHV one-loop correction for m > 3.

4.3 Infrared behavior

As a check of the correctness of result (4.16) we can test whether it reproduces the expected

structure of IR divergences, which in euclidean signature reads [28]–[31]

M
(1)
2m

∣
∣
IR

= −
1

ǫ2

2m∑

i=1

(

µ2

p2i,i+1

)ǫ

. (4.18)
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By using the known results for box integrals (a list may be found in [2]) we extract the

following divergent terms

F 1m
2m: 3

∣
∣
IR

= −
1

ǫ2

[(
p22m;2

)−ǫ
+
(
p21;2
)−ǫ

−
(
p22m;3

)−ǫ
]

F 1m
2m:m+3

∣
∣
IR

= −
1

ǫ2

[(
p2m;2

)−ǫ
+
(
p2m+1;2

)−ǫ
−
(
p2m;3

)−ǫ
]

F 2me
2m: 2m−2i+1;i+1

∣
∣
IR

= −
1

ǫ2

[(
p2i;2m−2i+2

)−ǫ
+
(
p2i+1;2m−2i+2

)−ǫ

−
(
p2i+1;2m−2i+1

)−ǫ
−
(
p22m−i+3;2i−3

)−ǫ
]

F 2mh
2m: 2i−4;2m−i+4

∣
∣
IR

= −
1

ǫ2

[
1

2

(
p22m−i+2;2

)−ǫ
+
(
p22m−i+3;2i−3

)−ǫ

−
1

2

(
p22m−i+4;2i−4

)−ǫ
−

1

2

(
p2i;2m−2i+2

)−ǫ
]

F 2mh
2m: 2m−2i;i+2

∣
∣
IR

= −
1

ǫ2

[
1

2

(
p2i;2
)−ǫ

+
(
p2i+1;2m−2i+1

)−ǫ

−
1

2

(
p2i+2;2m−2i

)−ǫ
−

1

2

(
p22m−i+2;2i−2

)−ǫ
]

. (4.19)

Summing these terms according to the prescription (4.16) we can straightforwardly ascer-

tain that (4.18) is recovered. This provides a strong consistency check.

Turning the logic around, the result (4.17) could have been derived from the knowledge

of the universal IR behavior of the amplitudes and some intuition from the diagrammatic

expansion of the purely scalar one loop amplitudes. In fact, looking at the topology of

graphs which contribute at one loop it is immediate to realize that box-like diagrams with

three and four massive legs never arise. One-mass integrals emerge from vector correc-

tions 6(a) and 6(b) at the two extrema of the chain; two-mass easy integrals arise when

these corrections are internal; two-mass hard boxes come from vector insertions of the

form 6(c) and 6(d) which leave two X fields or two X̄ fields as massless legs, respectively.

Given the particular structure of the diagrams, which are obtained by iterative insertion of

building blocks, it is reasonable to expect that all contributions associated to the insertion

of a particular block will have the same coefficient. Moreover, parity invariance forces the

coefficients of the two one-mass integrals to be the same, as well as the ones corresponding

to blocks 6(c) and 6(d). We are then left with three unknown coefficients which can be

determined from the request to have the correct 1/ǫ2 pole (this fixes the relative coefficient

between the one-mass and the two-mass hard integrals) and the correct 1/ǫ pole (this fixes

the relative coefficient of the two-mass easy integrals).
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A Notations and conventions

We work in four dimensional euclidean N = 1 superspace described by coordinates

(xµ, θα, θ
α̇
), α, α̇ = 1, 2. We follow conventions of [32].

Superspace covariant derivatives are defined as

Dα = ∂α +
i

2
θ
α̇
∂αα̇ , Dα̇ = ∂̄α̇ +

i

2
θα ∂αα̇ (A.1)

and satisfy the anticommutator

{Dα, Dα̇} = i ∂αα̇ . (A.2)

Given the algebra of Dirac (γµ)α α̇ matrices

(γµ)αα̇ (γν)αα̇ = 2 gµν (A.3)

trace identities needed for loop calculations can be easily obtained

tr(γµ γν) = −(γµ)αα̇ (γν)αα̇ = −2 gµν (A.4)

tr(γµ γν γρ γσ) = (γµ)αα̇ (γν)βα̇ (γ
ρ)βγ̇ (γσ)αγ̇ =

= 2 (gµν gρσ − gµρ gνσ + gµσ gνρ)− 2 ǫµνρσ . (A.5)

The SU(N) generators TA (A = 1, . . . , N2 − 1) are a set of N ×N hermitian matrices

satisfying
[
TA, TB

]
= i fABC TC . (A.6)

They are normalized as Tr(TATB) = δAB.

The N = 1 superspace action of N = 4 SYM reads

S =

∫

d4x

(
1

g2

∫

dθ2TrW 2 +

∫

dθ4Tr(e−gV Φi e
gV Φi)

+ i g

∫

dθ2Tr([X, Y ] Z) + i g

∫

dθ
2
Tr(
[
X̄, Ȳ

]
Z̄)

)

, (A.7)

where Φi = {X,Y, Z} and Wα = iD
2 (

e−gV Dα e
gV
)
.

The propagators of the gauge and chiral superfields are:

〈V (θ1)V (θ2)〉 = −
1

p2
δ4(θ1 − θ2) , 〈Φ(θ1)Φ(θ2)〉 =

1

p2
δ4(θ1 − θ2) (A.8)

and the interaction vertices relevant for the one-loop computation read

−g fABC XA Y B ZC , −g fABC X̄A Ȳ B Z̄C

i g fABC Φi AΦ
B
i V C . (A.9)
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B Integrals

We define sums of adjacent momenta by

pi,j = pi + pj (B.1)

and

pi;r =

i+r−1∑

k=i

pk . (B.2)

Momentum integrals are regularized by dimensional regularizationD = 4−2ǫ. The notation

for relevant triangle and box integrals is as in [3], up to a different normalization, due to

euclidean signature.

• Triangle integrals

– one-mass

I1m3:i = (4π)2−ǫ

∫
dDk

(2π)D
1

k2(k − pi)2(k + pi+1)2
; (B.3)

– two-mass

I2m3:r;i = (4π)2−ǫ

∫
dDk

(2π)D
1

k2(k − pi−1)2(k + pi;r)2
. (B.4)

• Box integrals

– one-mass

I1m4:i = (4π)2−ǫ

∫
dDk

(2π)D
1

k2(k + pi−3)2(k + pi−3;2)2(k + pi−3;3)2
; (B.5)

– two-mass easy

I2me
4:r;i = (4π)2−ǫ

∫
dDk

(2π)D
1

k2(k + pi−1)2(k + pi−1;r+1)2(k + pi−1;r+2)2
; (B.6)

– two-mass hard

I2mh
4:r;i = (4π)2−ǫ

∫
dDk

(2π)D
1

k2(k + pi−2)2(k + pi−2;2)2(k + pi−2;2+r)2
. (B.7)

For dual conformally invariant box integrals the box functions F of [3] are employed, again

with a different normalization

F 1m
2m:i = −

1

2 rΓ
p2i−2;2 p

2
i−3;2 I

1m
4:i

F 2me
2m:r;i = −

1

2 rΓ

(
p2i−1;r+1 p

2
i;r+1 − p2i;r p

2
i+r+1;n−r−2

)
I2me
4:r;i

F 2mh
2m:r;i = −

1

2 rΓ
p2i−2;2 p

2
i−1;r+1 I

2mh
4:r;i . (B.8)

Following the literature, rΓ is defined as

rΓ =
Γ(1 + ǫ) Γ(1− ǫ)2

Γ(1− 2ǫ)
, (B.9)

and the one-loop amplitude is rescaled by an overall cΓ = rΓ
(4π)2−ǫ

factor.
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D̄2

+ kαα̇pL pR

Φi

Φ̄2m−i+3 Φ̄2m−i+2D̄2 (

D2 D2 D2

−

pL pR

DαΦi

Φ̄2m−i+3 Φ̄2m−i+2D̄2 (

D2 D2 D2D̄α̇

+ kαα̇

pL pR

Φi

Φ̄2m−i+3 Φ̄2m−i+2

D̄2 D̄2

D2 D2 D2 D2D̄2

pL pR

Φi

Φ̄2m−i+3 Φ̄2m−i+2D̄2 (

D2 D2 D2 D2D̄2

pL pR

DαΦi

Φ̄2m−i+3 Φ̄2m−i+2D̄2 (

D2 D2 D2D̄α̇

Figure 7. D-algebra of the pentagon diagrams.

C Pentagon diagram D-algebra

As a non-trivial example of D-algebra reduction, in this appendix we consider the generic

pentagon diagram of figure 3(c) and spell out its D-algebra, leading to the result (4.15).

The computation may be undergone diagrammatically as shown in figure 7. The first term

corresponds to a scalar box integral. The second term does not contribute to the completely

scalar component of the superamplitude as can be proved as follows. Schematically the

structure of the spinorial derivatives acting on external fields reads:
∫

d4θ D2 (. . . )left
︸ ︷︷ ︸

odd # of D2’s

DαΦD̄2
(
ΦΦ
)
D̄α̇ D2 (. . . )right

︸ ︷︷ ︸

even # of D2’s

. (C.1)

Focusing on the scalar component and recalling the equations of motion, we see that the

D2D̄2 from the integration measure is not sufficient to cancel all the spinorial derivatives

acting on superfields and potentially extracting their fermionic component.

For instance we may require the D2 factor to act on D̄2
(
ΦΦ
)
and the D̄2 on D2 (. . . )left

to put an even number of squared derivatives, but then DαΦ would survive, giving rise

to a fermion as external state. Therefore we conclude that the only contribution to the

completely scalar scattering process comes from the scalar box integral above. All other

pentagon diagrams evaluate in the same fashion.
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