355 research outputs found

    Effect of the Heart Rate Variability Representations on the Quantification of the Cardiorespiratory Interactions during Autonomic Nervous System Blockade

    Get PDF
    The Heart Rate Variability (HRV) is a noninvasive tool to evaluate the activity of the autonomic nervous system. To study the HRV, different mathematical representations can be used. The selection of a representation might have an effect on the evaluation of the mechanisms that modulate the Heart Rate (HR). One of these mechanisms is the Respiratory Sinus Arrhythmia (RSA), i.e. an increased HR during inhalation and a decreased HR during exhalation. Different methods exist to quantify the RSA. A common approach is to calculate the power in the High Frequency (HF, 0.15 - 0.4 Hz) band of the spectrum of the HRV representation. More recently proposed methods use the respiratory signals to estimate the strength of the RSA.This paper studies the effect of the HRV representations on the quantification of the RSA. To this end, an experiment is used in which the sympathetic and parasympathetic branches of the autonomic nervous system are selectively blocked. Three different HRV representations are considered. Afterwards, the strength of the RSA is estimated using three approaches, namely the spectral content in the HF band of the HRV representations, orthogonal subspace projections and a time-frequency representation.The results suggest that the selection of an HRV representation does not have a significant impact on the RSA estimates in a healthy population

    The properties of the clumpy torus and BLR in the polar-scattered Seyfert 1 galaxy ESO 323-G77 through X-ray absorption variability

    Full text link
    We report results from multi-epoch X-ray observations of the polar-scattered Seyfert 1 galaxy ESO 323-G77. The source exhibits remarkable spectral variability from months to years timescales. The observed spectral variability is entirely due to variations of the column density of a neutral absorber towards the intrinsic nuclear continuum. The column density is generally Compton-thin ranging from a few times 1022^{22} cm2^{-2} to a few times 1023^{23} cm2^{-2}. However, one observation reveals a Compton-thick state with column density of the order of 1.5 ×\times 1024^{24} cm2^{-2}. The observed variability offers a rare opportunity to study the properties of the X-ray absorber(s) in an active galaxy. We identify variable X-ray absorption from two different components, namely (i) a clumpy torus whose individual clumps have a density of \leq 1.7 ×\times 108^8 cm3^{-3} and an average column density of \sim 4 ×\times 1022^{22} cm2^{-2}, and (ii) the broad line region (BLR), comprising individual clouds with density of 0.1-8 ×\times 109^9 cm3^{-3} and column density of 1023^{23}-1024^{24} cm2^{-2}. The derived properties of the clumpy torus can also be used to estimate the torus half-opening angle, which is of the order of 47 ^\circ. We also confirm the previously reported detection of two highly ionized warm absorbers with outflow velocities of 1000-4000 km s1^{-1}. The observed outflow velocities are consistent with the Keplerian/escape velocity at the BLR. Hence, the warm absorbers may be tentatively identified with the warm/hot inter-cloud medium which ensures that the BLR clouds are in pressure equilibrium with their surroundings. The BLR line-emitting clouds may well be the cold, dense clumps of this outflow, whose warm/hot phase is likely more homogeneous, as suggested by the lack of strong variability of the warm absorber(s) properties during our monitoring.Comment: 15 pages, 4 tables, and 9 figures. Accepted for publication in MNRA

    Locating privileged spreaders on an Online Social Network

    Full text link
    Social media have provided plentiful evidence of their capacity for information diffusion. Fads and rumors, but also social unrest and riots travel fast and affect large fractions of the population participating in online social networks (OSNs). This has spurred much research regarding the mechanisms that underlie social contagion, and also who (if any) can unleash system-wide information dissemination. Access to real data, both regarding topology --the network of friendships-- and dynamics --the actual way in which OSNs users interact--, is crucial to decipher how the former facilitates the latter's success, understood as efficiency in information spreading. With the quantitative analysis that stems from complex network theory, we discuss who (and why) has privileged spreading capabilities when it comes to information diffusion. This is done considering the evolution of an episode of political protest which took place in Spain, spanning one month in 2011.Comment: 7 pages, 4 figure

    Obstructive sleep apnoea-related respiratory events and desaturation severity are associated with the cardiac response

    Get PDF
    Obstructive sleep apnoea (OSA) causes, among other things, intermittent blood oxygen desaturations, increasing the sympathetic tone. Yet the effect of desaturations on heart rate variability (HRV), a simple and noninvasive method for assessing sympathovagal balance, has not been comprehensively studied. We aimed to study whether desaturation severity affects the immediate HRV.MethodsWe retrospectively analysed the electrocardiography signals in 5-min segments (n=39 132) recorded during clinical polysomnographies of 642 patients with suspected OSA. HRV parameters were calculated for each segment. The segments were pooled into severity groups based on the desaturation severity (i.e.the integrated area under the blood oxygen saturation curve) and the respiratory event rate within the segment. Covariate-adjusted regression analyses were performed to investigate possible confounding effects.ResultsWith increasing respiratory event rate, the normalised high-frequency band power (HFNU) decreased from 0.517 to 0.364 (p<0.01), the normalised low-frequency band power (LFNU) increased from 0.483 to 0.636 (p<0.01) and the mean RR interval decreased from 915 to 869 ms (p<0.01). Similarly, with increasing desaturation severity, the HFNUdecreased from 0.499 to 0.364 (p<0.01), the LFNUincreased from 0.501 to 0.636 (p<0.01) and the mean RR interval decreased from 952 to 854 ms (p<0.01). Desaturation severity-related findings were confirmed by considering the confounding factors in the regression analyses.ConclusionThe short-term HRV response differs based on the desaturation severity and the respiratory event rate in patients with suspected OSA. Therefore, a more detailed analysis of HRV and desaturation characteristics could enhance OSA severity estimation

    Engulfing a radio pulsar: the case of PSR J1023+0038

    Full text link
    The binary millisecond radio pulsar PSR J1023+0038 has been recently the subject of multiwavelength monitoring campaigns which revealed that an accretion disc has formed around the neutron star (since 2013 June). We present here the results of X-ray and UV observations carried out by the Swift satellite between 2013 October and 2014 May, and of optical and NIR observations performed with the REM telescope, the Liverpool Telescope, the 2.1-m telescope at the San Pedro M\'artir Observatory and the 1.52-m telescope at the Loiano observing station. The X-ray spectrum is well described by an absorbed power law, which is softer than the previous quiescent epoch (up to 2013 June). The strong correlation between the X-ray and the UV emissions indicates that the same mechanism should be responsible for part of the emission in these bands. Optical and infrared photometric observations show that the companion star is strongly irradiated. Double-peaked emission lines in the optical spectra provide compelling evidence for the presence of an outer accretion disc too. The spectral energy distribution from IR to X-rays is well modelled if the contributions from the companion, the disc and the intra-binary shock emission are all considered. Our extensive data set can be interpreted in terms of an engulfed radio pulsar: the radio pulsar is still active, but undetectable in the radio band due to a large amount of ionized material surrounding the compact object. X-rays and gamma-rays are produced in an intra-binary shock front between the relativistic pulsar wind and matter from the companion and an outer accretion disc. The intense spin-down power irradiates the disc and the companion star, accounting for the UV and optical emissions.Comment: 11 pages, 8 figures, 5 tables; accepted for publication on MNRA

    Fossil group origins - VI. Global X-ray scaling relations of fossil galaxy clusters

    Get PDF
    We present the first pointed X-ray observations of 10 candidate fossil galaxy groups and clusters. With these Suzaku observations, we determine global temperatures and bolometric X-ray luminosities of the intracluster medium (ICM) out to r500r_{500} for six systems in our sample. The remaining four systems show signs of significant contamination from non-ICM sources. For the six objects with successfully determined r500r_{500} properties, we measure global temperatures in the range 2.8TX5.3 keV2.8 \leq T_{\mathrm{X}} \leq 5.3 \ \mathrm{keV}, bolometric X-ray luminosities of 0.8×1044 LX,bol7.7×1044 erg s10.8 \times 10^{44} \ \leq L_{\mathrm{X,bol}} \leq 7.7\times 10^{44} \ \mathrm{erg} \ \mathrm{s}^{-1}, and estimate masses, as derived from TXT_{\mathrm{X}}, of M500>1014 MM_{500} > 10^{14} \ \mathrm{M}_{\odot}. Fossil cluster scaling relations are constructed for a sample that combines our Suzaku observed fossils with fossils in the literature. Using measurements of global X-ray luminosity, temperature, optical luminosity, and velocity dispersion, scaling relations for the fossil sample are then compared with a control sample of non-fossil systems. We find the fits of our fossil cluster scaling relations are consistent with the relations for normal groups and clusters, indicating fossil clusters have global ICM X-ray properties similar to those of comparable mass non-fossil systems.Comment: 17 pages, 7 figures, 8 tables. Accepted for publication in MNRA

    Twitter-based analysis of the dynamics of collective attention to political parties

    Get PDF
    Large-scale data from social media have a significant potential to describe complex phenomena in real world and to anticipate collective behaviors such as information spreading and social trends. One specific case of study is represented by the collective attention to the action of political parties. Not surprisingly, researchers and stakeholders tried to correlate parties' presence on social media with their performances in elections. Despite the many efforts, results are still inconclusive since this kind of data is often very noisy and significant signals could be covered by (largely unknown) statistical fluctuations. In this paper we consider the number of tweets (tweet volume) of a party as a proxy of collective attention to the party, identify the dynamics of the volume, and show that this quantity has some information on the elections outcome. We find that the distribution of the tweet volume for each party follows a log-normal distribution with a positive autocorrelation of the volume over short terms, which indicates the volume has large fluctuations of the log-normal distribution yet with a short-term tendency. Furthermore, by measuring the ratio of two consecutive daily tweet volumes, we find that the evolution of the daily volume of a party can be described by means of a geometric Brownian motion (i.e., the logarithm of the volume moves randomly with a trend). Finally, we determine the optimal period of averaging tweet volume for reducing fluctuations and extracting short-term tendencies. We conclude that the tweet volume is a good indicator of parties' success in the elections when considered over an optimal time window. Our study identifies the statistical nature of collective attention to political issues and sheds light on how to model the dynamics of collective attention in social media.Comment: 16 pages, 7 figures, 3 tables. Published in PLoS ON

    Detection of blueshifted emission and absorption and a relativistic Iron line in the X-ray spectrum of ESO 323-G077

    Full text link
    We report on the X-ray observation of the Seyfert 1 ESO323-G077 performed with XMM-Newton. The spectra show a complex spectrum with conspicuous absorption and emission features. The continuum emission can be modelled with a power law with an index of 1.99+/-0.02 in the whole XMM-Newton energy band, marginally consistent with typical values of Type-I objects. An absorption component with an uncommonly high equivalent Hydrogen column, n_H=5.82(+0.12/-0.11)x10^22 cm-2, is affecting the soft part of the spectrum. Additionally, two warm absorption components are also present. The lower ionised one has an ionisation parameter of Log(U)=2.14(+0.06/-0.07) and an outflowing velocity of v=3200(+600/-200) km/s. Two absorption lines located at ~6.7 and ~7.0 keV can be modelled with the highly ionised absorber. The ionisation parameter and outflowing velocity of the gas measured are Log(U)=3.26(+0.19/-0.15) and v=1700(+600/-400) km/s, respectively. Four emission lines were also detected in the soft energy band. The most likely explanation for these emission lines is that they are associated with an outflowing gas with a velocity of ~2000 km/s. The data suggest that the same gas which is causing the absorption could also being responsible of these emission features. Finally, the spectrum shows the presence of a relativistic iron emission line likely originated in the accretion disc of a Kerr BH with an inclination of ~25 deg. We propose a model to explain the observed X-ray properties which invokes the presence of a two-phase outflow with cone-like structure and a velocity of the order of 2,000-4,000 km/s. The inner layer of the cone would be less ionised, or even neutral, than the outer layer. The inclination angle would be lower than the opening angle of the outflowing cone.Comment: 11 pages, accepted in MNRA

    Refining the associations of the Fermi Large Area Telescope Source Catalogs

    Get PDF
    The Fermi-Large Area Telescope (LAT) First Source Catalog (1FGL) was released in February 2010 and the Fermi-LAT 2-Year Source Catalog (2FGL) appeared in April 2012, based on data from 24 months of operation. Since their releases, many follow up observations of unidentified gamma-ray sources (UGSs) were performed and new procedures to associate gamma-ray sources with potential counterparts at other wavelengths were developed. Here we review and characterize all the associations as published in the 1FGL and 2FGL catalog on the basis of multifrequency archival observations. In particular we located 177 spectra for the low-energy counterparts that were not listed in the previous Fermi catalogs, and in addition we present new spectroscopic observations of 8 gamma-ray blazar candidates. Based on our investigations, we introduce a new counterpart category of "candidate associations" and propose a refined classification for the candidate low-energy counterparts of the Fermi sources. We compare the 1FGL-assigned counterparts with those listed in the 2FGL to determine which unassociated sources became associated in later releases of the Fermi catalogs. We also search for potential counterparts to all the remaining unassociated Fermi sources. Finally, we prepare a refined and merged list of all the associations of the 1FGL plus 2FGL catalogs that includes 2219 unique Fermi objects. This is the most comprehensive and systematic study of all the associations collected for the gamma-ray sources available to date. We conclude that 80% of the Fermi sources have at least one known plausible gamma-ray emitter within their positional uncertainty regions.Comment: 26 pages, 24 figures, 7 tables, ApJS accepted for publication (pre-proof version uploaded
    corecore