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Abstract

The Heart Rate Variability (HRV) is a noninvasive tool
to evaluate the activity of the autonomic nervous system.
To study the HRV, different mathematical representations
can be used. The selection of a representation might have
an effect on the evaluation of the mechanisms that modu-
late the Heart Rate (HR). One of these mechanisms is the
Respiratory Sinus Arrhythmia (RSA), i.e. an increased HR
during inhalation and a decreased HR during exhalation.
Different methods exist to quantify the RSA. A common
approach is to calculate the power in the High Frequency
(HF, 0.15 - 0.4 Hz) band of the spectrum of the HRV re-
presentation. More recently proposed methods use the res-
piratory signals to estimate the strength of the RSA.
This paper studies the effect of the HRV representations
on the quantification of the RSA. To this end, an experi-
ment is used in which the sympathetic and parasympathetic
branches of the autonomic nervous system are selectively
blocked. Three different HRV representations are conside-
red. Afterwards, the strength of the RSA is estimated u-
sing three approaches, namely the spectral content in the
HF band of the HRV representations, orthogonal subspace
projections and a time-frequency representation.
The results suggest that the selection of an HRV represen-
tation does not have a significant impact on the RSA esti-
mates in a healthy population.

1. Introduction

The analysis of Heart Rate Variability (HRV) provides in-
sights into the modulation of the Autonomic Nervous Sys-
tem (ANS) in a noninvasive way [1]. To evaluate the
HRV, different mathematical tools can be used such as
the tachogram [1], the Integral Pulse Frequency Modula-
tion (IPFM) model [2] and the point process model [3]
[4]. Each of these tools generates different HRV represen-
tations.

Parameters derived from the HRV representations are use-
ful to assess the parasympathetic and sympathetic modu-
lations from the ANS. In the frequency domain, the power
spectrum of the HRV can be used, in which the power in
the Low Frequency band (LF, 0.04 Hz - 0.15 Hz) is usually
linked to both sympathetic and parasympathetic modula-
tions [1]. Besides, the power in the HF band (HF, 0.15
Hz - 0.4 Hz) mainly represents heart rate oscillations syn-
chronous with respiration and is mediated by the parasym-
pathetic branch of the ANS. The synchronization between
respiration and heart rate is possible thanks to a physio-
logical process called the Respiratory Sinus Arrhythmia
(RSA) [5], which is observed as an increased HR during
inhalation and a decreased HR during exhalation. Usu-
ally, the RSA is quantified as the power contained in the
HF band of the HRV [6]. However, the respiratory rate
might be characterized by narrow bands inside the HF or
it can fall outside the HF band. For this reason, alternative
methods have been proposed for the quantification of the
RSA. Two of them are the subspace projections[7] and a
Time-Frequency (TF) representation [8], which are evalu-
ated in this study.
The aim of this paper is to evaluate the influence of the
HRV representations on the aforementioned RSA quantifi-
cations. This evaluation is done using a dataset in which
changes in autonomic regulation of the heart are pharma-
cologically induced with different ANS blockades (atro-
pine or propranolol) in a healthy population.

2. Dataset

The Pharmacological ANS blockades database (HMS-
MIT-FMMS), recorded in the Clinical Center at the Massa-
chusetts Institute of Technology 1, was used in this study.
Single-lead electrocardiogram (ECG) signals and changes
in the instantaneous lung volume with a two-belt chest-
abdomen inductance plethysmograph were acquired with a
sampling frequency of 360 Hz from 13 healthy male volun-
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teers (Age: 19-38 years) without any history of cardiores-
piratory diseases. During the protocol, atropine (0.03
mg/kg) or propranolol (0.2 mg/kg), for parasympathetic
blockade and suppression of the sympathetic activity res-
pectively, were administered through a catheter.
The signals were first recorded with the subjects in supine
position and without administering any of the drugs. Next,
the volunteers were moved to standing position and, after
a minimum waiting period of 5 minutes to reach hemo-
dynamic equilibrium, the signals were recorded. After-
wards, the subjects were given one of the two drugs. 7
of them (20.29 ± 1.25 years old) received atropine and 6
(26±6.5 years old) received propranolol. After 10 minutes
to reach equilibrium, the signals were acquired in supine
and standing positions following the same protocol de-
scribed above. The recordings on each stage are referred
as supine control (SUC), standing control (STC), supine
atropine (SUA), standing atropine (STA), supine propra-
nolol (SUP) and standing propranolol (STP). The volun-
teers were asked to breathe with an irregular respiratory
rate following the indications of a recorded tone. The pro-
tocol is depicted in Figure 1 and more details can be found
in [9].

3. Methods

3.1. Preprocessing

Firstly, the ECG signals were upsampled from 360 Hz to
1080 Hz using a cubic spline interpolation. Afterwards, the
R-peak locations were found using the method reported in
[10]. For this, the software described in [11] with the post-
processing and ectopic removal options was used.
Secondly, the respiratory signals were downsampled from
360 Hz to 4 Hz after applying an antialiasing filter and next
bandpass filtered between 0.01 and 1 Hz.

3.2. HRV representations

The R-peaks occur at discrete unevenly sampled time
points. Therefore, three mathematical descriptions of the
HRV were used to generate evenly sampled HRV repre-
sentations with a sampling frequency of 4 Hz:
• The uniformly sampled tachogram: This representation
is built by first calculating the RR-intervals, i.e. the time
difference between consecutive R-peaks, and then resam-
pling these with a cubic spline interpolation.
• The Integral Pulse Frequency Modulation Model
(IPFM) [2]: This model assumes that the sympathetic
and parasympathetic regulations on the HRV can be rep-
resented by a modulating signal that triggers a pulse when
its integral reaches a certain threshold. This modulating
signal was used as an HRV representation.
• The Point Process model [3]: This model characterizes
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Propranolol Protocol (6)

Figure 1. Recording protocol. The numbers in brackets
indicate the number of subjects on each phase.

the statistical properties of the pulses in the sinoatrial node
as a series of discrete events in continuous time following
a time-varying history-dependent inverse Gaussian proba-
bility distribution. The model order p was set as 8 and the
forgetting factor to 0.98 based on the parameters reported
in [3]. ∆ was set to 0.25 s to obtain a HRV representation
with Fs=4 Hz and the window for the estimation of the
initial parameters was empirically set to 50 s. The HRV
representation in this case is derived as the first moment of
the probability of the RR-intervals.
The three representations were generated for each stage on
the experimental protocol. Afterwards, they were band-
pass filtered between 0.01 Hz and 1 Hz.

3.3. RSA quantifications

The filtered respirations and the HRV representations were
used to quantify the strength of the RSA with three diffe-
rent approaches:
• Normalized HF band: The normalized power in the HF
band (HFn) of the Power Spectral Density (PSD) estima-
tion of the HRV representations was derived. This band
was defined either from 0.15 Hz to 0.4 Hz, or using the ex-
tended band from 0.15 Hz to half the mean heart rate [12].
The shortest between these two was chosen. For the cal-
culations, the PSD estimations were computed using the
Welch’s method and a hamming window of 40 s with 20 s
overlap.
• Orthogonal Subspace Projections (OSP) [7]: This
method was used to decompose each HRV representation
into a respiratory component (HRVresp) and a residual
component. The relative power of HRVresp (Presp) was
used to quantify the dynamics of the HRV linearly related
to the respiration and it was calculated as:

Presp = (HRV T
resp ·HRVresp)/(HRV T ·HRV ) (1)

• Time Frequency (TF) representation [8] : The frequency
distribution over time of the respiratory signals and HRV
representations was characterized based on a Cohen’s class
TF distribution. This tool analyzes changes in the fre-
quency content of the signals over time while reducing
biases in the estimates that occur with other TF represen-
tations. The coherence spectrum between the respiratory
and HRV signals was also calculated using the same TF
representation. The product between the coherence spec-
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trum and the spectrogram of the HRV representation was
used to extract the spectrum of the respiratory component
[8]. This spectrum was normalized by the spectrum of the
HRV and then averaged to obtain a quantification of the
RSA, denoted as PTF .
The OSP and TF representation were shown in [13] to be
better to capture the change on the strength of the RSA
with age than other methods

3.4. Comparison of the methods

Two statistical tests were used for the comparisons:
• Significant differences between the estimates of the
same parameter, in the same stage of the protocol using
the different HRV representations. These differences were
evaluated using Kruskall-Wallis and multiple comparisons
tests with Bonferroni correction.
• Significant changes on the parameters between the
supine and standing positions using the Friedman’s tests
for repeated measures.
These tests were performed with a 95% confidence inter-
val.

4. Results and Discussion

The results are shown in figure 2 and the tests are discussed
in this section.

4.1. HRV representations

The differences for the same parameter, in the same stage
of the protocol and with the different HRV representations
were not significant between the resampled tachogram and
the modulating signal of the IPFM model. Few signifi-
cant differences (marked with a � in Figure 2) were found
when comparing with the representation based on the point
process model (p < 0.05). This observation might be ex-
plained by the fact that the estimation of the probability
distribution of the R-peaks in the point process model re-
quires an initial number of samples. For this reason, the
resulting segments are shorter, producing significantly dif-
ferent outcomes in some cases. This effect should be min-
imized in longer signals.

4.2. Supine vs. Standing position

The tests for the variation of the parameters due to the
change from supine to standing position display similar
trends. Firstly, the reduction of the parameters during the
control stage (SUC to STC) are significant. When a drug is
administered, and despite that significant differences were
not found in most of the cases, a decreasing trend was also
observed. These results are associated with an increased
sympathetic activity and/or a decreased vagal modulation
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Figure 2. Boxplots for HFn, PTF and Presp calculated
with different HRV representations. The � indicate signif-
icant differences in the calculated parameters with respect
to the ones calculated with the point process representa-
tion. Significant changes due to position changes from
supine to standing are indicated with *.
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in the standing position, which can be clearly observed us-
ing any of the evaluated parameters.

4.3. RSA estimations

As discussed in [7] and as observed in Figure 2, the quan-
tification of the RSA using the HFn parameter tends to
underestimate the respiratory modulation on the HRV be-
cause the breathing rates tend to fall bellow 0.15 Hz in this
dataset. Therefore, the respiratory information is mainly
contained in the LF band and this is not captured by the
HFn parameter. In contrast, the alternative methods eval-
uated in this paper do not consider a specific frequency
band. On the one hand, the OSP is based on the pre-
dictability of the HRV from the respiration, and on the
other hand, the TF representation is based on their spec-
tral coherence. Therefore, these quantifications are able to
better capture the RSA in conditions in which the spectrum
of the respiration falls outside the HF. In general, the trends
observed with the two RSA quantifications are consistent.

5. Conclusions

Despite few significant differences, the trends followed by
the RSA estimates were very similar with the three HRV
representations under investigation. These results suggest
that the selection of a HRV representation is irrelevant for
the analysis of the RSA in this dataset. However, these
signals come from healthy volunteers, while this selection
might become more important when a more irregular ECG
signal occurs. Further analysis should consider datasets
with a significant amount of ectopic beats or with signals
recorded during exercise. In addition, the trends on the
RSA quantifications when estimated with either the sub-
space projections or with the TF representation were con-
sistent. This result indicates that these methods measure
the respiratory modulation similarly since they are both
based on the extraction of the respiratory information from
the HRV representation.
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