185 research outputs found

    Supersonic Downflows at the Umbra-Penumbra Boundary of Sunspots

    Full text link
    High resolution spectropolarimetric observations of 3 sunspots taken with Hinode demonstrate the existence of supersonic downflows at or close to the umbra-penumbra boundary which have not been reported before. These downflows are confined to large patches, usually encompassing bright penumbral filaments, and have lifetimes of more than 14 hr. The presence of strong downflows in the center-side penumbra near the umbra rules out an association with the Evershed flow. Chromospheric filtergrams acquired close to the time of the spectropolarimetric measurements show large, strong, and long-lived brightenings in the neighborhood of the downflows. The photospheric intensity also exhibit persistent brightenings comparable to the quiet Sun. Interestingly, the orientation of the penumbral filaments at the site of the downflows is similar to that resulting from the reconnection process described by Ryutova et al. The existence of such downflows in the inner penumbra represents a challenge for numerical models of sunspots because they have to explain them in terms of physical processes likely affecting the chromosphere.Comment: Accepted for publication in Ap

    Flow instabilities of magnetic flux tubes II. Longitudinal flow

    Full text link
    Flow-induced instabilities are relevant for the storage and dynamics of magnetic fields in stellar convection zones and possibly also in other astrophysical contexts. We continue the study started in the first paper of this series by considering the stability properties of longitudinal flows along magnetic flux tubes. A linear stability analysis was carried out to determine criteria for the onset of instability in the framework of the approximation of thin magnetic flux tubes. In the non-dissipative case, we find Kelvin-Helmholtz instability for flow velocities exceeding a critical speed that depends on the Alfv{\'e}n speed and on the ratio of the internal and external densities. Inclusion of a friction term proportional to the relative transverse velocity leads to a friction-driven instability connected with backward (or negative energy) waves. We discuss the physical nature of this instability. In the case of a stratified external medium, the Kelvin-Helmholtz instability and the friction-driven instability can set in for flow speeds significantly lower than the Alfv{\'e}n speed. Dissipative effects can excite flow-driven instability below the thresholds for the Kelvin-Helmholtz and the undulatory (Parker-type) instabilities. This may be important for magnetic flux storage in stellar convection zones and for the stability of astrophysical jets.Comment: accepted by Astronomy & Astrophysic

    Twist, Writhe & Helicity in the inner penumbra of a sunspot

    Full text link
    The aim of this work is the determination of the twist, writhe, and self magnetic helicity of penumbral filaments located in an inner Sunspot penumbra. To this extent, we inverted data taken with the spectropolarimeter (SP) aboard Hinode with the SIR (Stokes Inversion based on Response function) code. For the construction of a 3D geometrical model we applied a genetic algorithm minimizing the divergence of the magnetic field vector and the net magnetohydrodynamic force, consequently a force-free solution would be reached if possible. We estimated two proxies to the magnetic helicity frequently used in literature: the force-free parameter and the current helicity term. We show that both proxies are only qualitative indicators of the local twist as the magnetic field in the area under study significantly departures from a force-free configuration. The local twist shows significant values only at the borders of bright penumbral filaments with opposite signs on each side. These locations are precisely correlated to large electric currents. The average twist (and writhe) of penumbral structures is very small. The spines (dark filaments in the background) show a nearly zero writhe. The writhe per unit length of the intraspines diminishes with increasing length of the tube axes. Thus, the axes of tubes related to intraspines are less wrung when the tubes are more horizontal. As the writhe of the spines is very small, we can conclude that the writhe reaches only significant values when the tube includes the border of a intraspine.Comment: 7 pages, 4 figures; Astrophysical Journal, in pres

    Amplification of MHD waves in swirling astrophysical flows

    Full text link
    Recently it was found that helical magnetized flows efficiently amplify Alfv\'en waves (Rogava et al. 2003, A&A, v.399, p.421). This robust and manifold nonmodal effect was found to involve regimes of transient algebraic growth (for purely ejectional flows), and exponential instabilities of both usual and parametric nature. However the study was made in the incompressible limit and an important question remained open - whether this amplification is inherent to swirling MHD flows per se and what is the degree of its dependence on the incompressibility condition. In this paper, in order to clear up this important question, we consider full compressible spectrum of MHD modes: Alfv\'en waves (AW), slow magnetosonic waves (SMW) and fast magnetosonic waves (FMW). We find that helical flows inseparably blend these waves with each other and make them unstable, creating the efficient energy transfer from the mean flow to the waves. The possible role of these instabilities for the onset of the MHD turbulence, self-heating of the flow and the overall dynamics of astrophysical flows are discussed.Comment: 8 pages, 9 figures, accepted for publication (18.03.2003) in the "Astronomy and Astrophysics

    Swirling astrophysical flows - efficient amplifiers of Alfven waves

    Full text link
    We show that a helical shear flow of a magnetized plasma may serve as an efficient amplifier of Alfven waves. We find that even when the flow is purely ejectional (i.e., when no rotation is present) Alfven waves are amplified through the transient, shear-induced, algebraic amplification process. Series of transient amplifications, taking place sequentially along the flow, may result in a cascade amplification of these waves. However, when a flow is swirling or helical (i.e., some rotation is imposed on the plasma motion), Alfven waves become subject to new, much more powerful shear instabilities. In this case, depending on the type of differential rotation, both usual and parametric instabilities may appear. We claim that these phenomena may lead to the generation of large amplitude Alfven waves and the mechanism may account for the appearance of such waves in the solar atmosphere, in accretion-ejecion flows and in accretion columns. These processes may also serve as an important initial (linear and nonmodal) phase in the ultimate subcritical transition to MHD Alfvenic turbulence in various kinds of astrophysical shear flows.Comment: 12 pages, 11 figures, accepted for publication (25-11-02) in Astronomy and Astrophysic

    Temporal evolution of the Evershed flow in sunspots. II. Physical properties and nature of Evershed clouds

    Full text link
    Context: Evershed clouds (ECs) represent the most conspicuous variation of the Evershed flow in sunspot penumbrae. Aims: We determine the physical properties of ECs from high spatial and temporal resolution spectropolarimetric measurements. Methods: The Stokes profiles of four visible and three infrared spectral lines are subject to inversions based on simple one-component models as well as more sophisticated realizations of penumbral flux tubes embedded in a static ambient field (uncombed models). Results: According to the one-component inversions, the EC phenomenon can be understood as a perturbation of the magnetic and dynamic configuration of the penumbral filaments along which these structures move. The uncombed inversions, on the other hand, suggest that ECs are the result of enhancements in the visibility of penumbral flux tubes. We conjecture that the enhancements are caused by a perturbation of the thermodynamic properties of the tubes, rather than by changes in the vector magnetic field. The feasibility of this mechanism is investigated performing numerical experiments of thick penumbral tubes in mechanical equilibrium with a background field. Conclusions: While the one-component inversions confirm many of the properties indicated by a simple line parameter analysis (Paper I of this series), we tend to give more credit to the results of the uncombed inversions because they take into account, at least in an approximate manner, the fine structure of the penumbra.Comment: Accepted for publication in A&

    Propagation of sausage soliton in the solar lower atmosphere observed by Hinode/SOT

    Full text link
    Acoustic waves and pulses propagating from the solar photosphere upwards may quickly develop into shocks due to the rapid decrease of atmospheric density. However, if they propagate along a magnetic flux tube, then the nonlinear steepening may be balanced by tube dispersion effects. This may result in the formation of sausage soliton. The aim of this letter is to report an observational evidence of sausage soliton in the solar chromosphere. Time series of Ca II H line obtained at the solar limb with the Solar Optical Telescope (SOT) on the board of Hinode is analysed. Observations show an intensity blob, which propagates from 500 km to 1700 km above the solar surface with the mean apparent speed of 35 km s1^{-1}. The speed is much higher than expected local sound speed, therefore the blob can not be a simple pressure pulse. The blob speed, length to width ratio and relative intensity correspond to slow sausage soliton propagating along a magnetic tube. The blob width is increased with height corresponding to the magnetic tube expansion in the stratified atmosphere. Propagation of the intensity blob can be the first observational evidence of slow sausage soliton in the solar atmosphere.Comment: 5 pages, 4 figures, accepted in MNRA

    The role of Rayleigh-Taylor instabilities in filament threads

    Full text link
    Many solar filaments and prominences show short-lived horizontal threads lying parallel to the photosphere. In this work the possible link between Rayleigh-Taylor instabilities and thread lifetimes is investigated. This is done by calculating the eigenmodes of a thread modelled as a Cartesian slab under the presence of gravity. An analytical dispersion relation is derived using the incompressible assumption for the magnetohydrodynamic (MHD) perturbations. The system allows a mode that is always stable, independently of the value of the Alfv\'en speed in the thread. The character of this mode varies from being localised at the upper interface of the slab when the magnetic field is weak, to having a global nature and resembling the transverse kink mode when the magnetic field is strong. On the contrary, the slab model permits another mode that is unstable and localised at the lower interface when the magnetic field is weak. The growth rates of this mode can be very short, of the order of minutes for typical thread conditions. This Rayleigh-Taylor unstable mode becomes stable when the magnetic field is increased, and in the limit of strong magnetic field it is essentially a sausage magnetic mode. The gravity force might have a strong effect on the modes of oscillation of threads, depending on the value of the Alfv\'en speed. In the case of threads in quiescent filaments, where the Alfv\'en speed is presumably low, very short lifetimes are expected according to the slab model. In active region prominences, the stabilising effect of the magnetic tension might be enough to suppress the Rayleigh-Taylor instability for a wide range of wavelengths

    A weakly nonlinear Alfvénic pulse in a transversely inhomogeneous medium

    Get PDF
    The interaction of a weakly nonlinear Alfvénic pulse with an Alfvén speed inhomogeneity in the direction perpendicular to the magnetic field is investigated. Identical to the phase mixing experienced by a harmonic Alfvén wave, sharp transverse gradients are generated in the pulse by the inhomogeneity. In the initial stage of the evolution of an initially plane Alfvénic pulse, the transverse gradients efficiently generate transversely propagating fast magnetoacoustic waves. However, high resolution full MHD numerical simulations of the developed stage of the pulse evolution show that the generation saturates due to destructive wave interference. It is shown that the weakly non-linear description of the generated fast magnetoacoustic wave is well described by the driven wave equation proposed in Nakariakov et al. (1997), and a simple numerical code (2D MacCromack), which solves it with minimal CPU resources, produces identical results to those obtained from the full MHD code (Lare2d, Arber et al. 2001). A parametric study of the phenomenon is undertaken, showing that, contrary to one's expectations, steeper inhomogeneities of the Alfvén speed do not produce higher saturation levels of the fast wave generation. There is a certain optimal gradient of the inhomogeneity that ensures the maximal efficiency of the fast wave generation

    High cadence spectropolarimetry of moving magnetic features observed around a pore

    Get PDF
    Moving magnetic features (MMFs) are small-size magnetic elements that are seen to stream out from sunspots, generally during their decay phase. Several observational results presented in the literature suggest them to be closely related to magnetic filaments that extend from the penumbra of the parent spot. Nevertheless, few observations of MMFs streaming out from spots without penumbra have been reported. The literature still lacks of analyses of the physical properties of these features. We investigate physical properties of monopolar MMFs observed around a small pore that had developed penumbra in the days preceding our observations and compare our results with those reported in the literature for features observed around sunspots. We analyzed NOAA 11005 during its decay phase with data acquired at the Dunn Solar Telescope in the FeI 617.3nmandtheCaII854.2 nm and the CaII 854.2 nm spectral lines with IBIS, and in the G-band. The field of view showed monopolar MMFs of both polarities streaming out from the leading negative polarity pore of the observed active region. Combining different analyses of the data, we investigated the temporal evolution of the relevant physical quantities associated with the MMFs as well as the photospheric and chromospheric signatures of these features. We show that the characteristics of the investigated MMFs agree with those reported in the literature for MMFs that stream out from spots with penumbrae. Moreover, observations of at least two of the observed features suggest them to be manifestations of emerging magnetic arches.Comment: Accepted by A&
    corecore