185 research outputs found
Supersonic Downflows at the Umbra-Penumbra Boundary of Sunspots
High resolution spectropolarimetric observations of 3 sunspots taken with
Hinode demonstrate the existence of supersonic downflows at or close to the
umbra-penumbra boundary which have not been reported before. These downflows
are confined to large patches, usually encompassing bright penumbral filaments,
and have lifetimes of more than 14 hr. The presence of strong downflows in the
center-side penumbra near the umbra rules out an association with the Evershed
flow. Chromospheric filtergrams acquired close to the time of the
spectropolarimetric measurements show large, strong, and long-lived
brightenings in the neighborhood of the downflows. The photospheric intensity
also exhibit persistent brightenings comparable to the quiet Sun.
Interestingly, the orientation of the penumbral filaments at the site of the
downflows is similar to that resulting from the reconnection process described
by Ryutova et al. The existence of such downflows in the inner penumbra
represents a challenge for numerical models of sunspots because they have to
explain them in terms of physical processes likely affecting the chromosphere.Comment: Accepted for publication in Ap
Flow instabilities of magnetic flux tubes II. Longitudinal flow
Flow-induced instabilities are relevant for the storage and dynamics of
magnetic fields in stellar convection zones and possibly also in other
astrophysical contexts. We continue the study started in the first paper of
this series by considering the stability properties of longitudinal flows along
magnetic flux tubes. A linear stability analysis was carried out to determine
criteria for the onset of instability in the framework of the approximation of
thin magnetic flux tubes. In the non-dissipative case, we find Kelvin-Helmholtz
instability for flow velocities exceeding a critical speed that depends on the
Alfv{\'e}n speed and on the ratio of the internal and external densities.
Inclusion of a friction term proportional to the relative transverse velocity
leads to a friction-driven instability connected with backward (or negative
energy) waves. We discuss the physical nature of this instability. In the case
of a stratified external medium, the Kelvin-Helmholtz instability and the
friction-driven instability can set in for flow speeds significantly lower than
the Alfv{\'e}n speed. Dissipative effects can excite flow-driven instability
below the thresholds for the Kelvin-Helmholtz and the undulatory (Parker-type)
instabilities. This may be important for magnetic flux storage in stellar
convection zones and for the stability of astrophysical jets.Comment: accepted by Astronomy & Astrophysic
Twist, Writhe & Helicity in the inner penumbra of a sunspot
The aim of this work is the determination of the twist, writhe, and self
magnetic helicity of penumbral filaments located in an inner Sunspot penumbra.
To this extent, we inverted data taken with the spectropolarimeter (SP) aboard
Hinode with the SIR (Stokes Inversion based on Response function) code. For the
construction of a 3D geometrical model we applied a genetic algorithm
minimizing the divergence of the magnetic field vector and the net
magnetohydrodynamic force, consequently a force-free solution would be reached
if possible. We estimated two proxies to the magnetic helicity frequently used
in literature: the force-free parameter and the current helicity term. We show
that both proxies are only qualitative indicators of the local twist as the
magnetic field in the area under study significantly departures from a
force-free configuration. The local twist shows significant values only at the
borders of bright penumbral filaments with opposite signs on each side. These
locations are precisely correlated to large electric currents. The average
twist (and writhe) of penumbral structures is very small. The spines (dark
filaments in the background) show a nearly zero writhe. The writhe per unit
length of the intraspines diminishes with increasing length of the tube axes.
Thus, the axes of tubes related to intraspines are less wrung when the tubes
are more horizontal. As the writhe of the spines is very small, we can conclude
that the writhe reaches only significant values when the tube includes the
border of a intraspine.Comment: 7 pages, 4 figures; Astrophysical Journal, in pres
Amplification of MHD waves in swirling astrophysical flows
Recently it was found that helical magnetized flows efficiently amplify
Alfv\'en waves (Rogava et al. 2003, A&A, v.399, p.421). This robust and
manifold nonmodal effect was found to involve regimes of transient algebraic
growth (for purely ejectional flows), and exponential instabilities of both
usual and parametric nature. However the study was made in the incompressible
limit and an important question remained open - whether this amplification is
inherent to swirling MHD flows per se and what is the degree of its dependence
on the incompressibility condition. In this paper, in order to clear up this
important question, we consider full compressible spectrum of MHD modes:
Alfv\'en waves (AW), slow magnetosonic waves (SMW) and fast magnetosonic waves
(FMW). We find that helical flows inseparably blend these waves with each other
and make them unstable, creating the efficient energy transfer from the mean
flow to the waves. The possible role of these instabilities for the onset of
the MHD turbulence, self-heating of the flow and the overall dynamics of
astrophysical flows are discussed.Comment: 8 pages, 9 figures, accepted for publication (18.03.2003) in the
"Astronomy and Astrophysics
Swirling astrophysical flows - efficient amplifiers of Alfven waves
We show that a helical shear flow of a magnetized plasma may serve as an
efficient amplifier of Alfven waves. We find that even when the flow is purely
ejectional (i.e., when no rotation is present) Alfven waves are amplified
through the transient, shear-induced, algebraic amplification process. Series
of transient amplifications, taking place sequentially along the flow, may
result in a cascade amplification of these waves. However, when a flow is
swirling or helical (i.e., some rotation is imposed on the plasma motion),
Alfven waves become subject to new, much more powerful shear instabilities. In
this case, depending on the type of differential rotation, both usual and
parametric instabilities may appear. We claim that these phenomena may lead to
the generation of large amplitude Alfven waves and the mechanism may account
for the appearance of such waves in the solar atmosphere, in accretion-ejecion
flows and in accretion columns. These processes may also serve as an important
initial (linear and nonmodal) phase in the ultimate subcritical transition to
MHD Alfvenic turbulence in various kinds of astrophysical shear flows.Comment: 12 pages, 11 figures, accepted for publication (25-11-02) in
Astronomy and Astrophysic
Temporal evolution of the Evershed flow in sunspots. II. Physical properties and nature of Evershed clouds
Context: Evershed clouds (ECs) represent the most conspicuous variation of
the Evershed flow in sunspot penumbrae. Aims: We determine the physical
properties of ECs from high spatial and temporal resolution spectropolarimetric
measurements. Methods: The Stokes profiles of four visible and three infrared
spectral lines are subject to inversions based on simple one-component models
as well as more sophisticated realizations of penumbral flux tubes embedded in
a static ambient field (uncombed models). Results: According to the
one-component inversions, the EC phenomenon can be understood as a perturbation
of the magnetic and dynamic configuration of the penumbral filaments along
which these structures move. The uncombed inversions, on the other hand,
suggest that ECs are the result of enhancements in the visibility of penumbral
flux tubes. We conjecture that the enhancements are caused by a perturbation of
the thermodynamic properties of the tubes, rather than by changes in the vector
magnetic field. The feasibility of this mechanism is investigated performing
numerical experiments of thick penumbral tubes in mechanical equilibrium with a
background field. Conclusions: While the one-component inversions confirm many
of the properties indicated by a simple line parameter analysis (Paper I of
this series), we tend to give more credit to the results of the uncombed
inversions because they take into account, at least in an approximate manner,
the fine structure of the penumbra.Comment: Accepted for publication in A&
Propagation of sausage soliton in the solar lower atmosphere observed by Hinode/SOT
Acoustic waves and pulses propagating from the solar photosphere upwards may
quickly develop into shocks due to the rapid decrease of atmospheric density.
However, if they propagate along a magnetic flux tube, then the nonlinear
steepening may be balanced by tube dispersion effects. This may result in the
formation of sausage soliton. The aim of this letter is to report an
observational evidence of sausage soliton in the solar chromosphere. Time
series of Ca II H line obtained at the solar limb with the Solar Optical
Telescope (SOT) on the board of Hinode is analysed. Observations show an
intensity blob, which propagates from 500 km to 1700 km above the solar surface
with the mean apparent speed of 35 km s. The speed is much higher than
expected local sound speed, therefore the blob can not be a simple pressure
pulse. The blob speed, length to width ratio and relative intensity correspond
to slow sausage soliton propagating along a magnetic tube. The blob width is
increased with height corresponding to the magnetic tube expansion in the
stratified atmosphere. Propagation of the intensity blob can be the first
observational evidence of slow sausage soliton in the solar atmosphere.Comment: 5 pages, 4 figures, accepted in MNRA
The role of Rayleigh-Taylor instabilities in filament threads
Many solar filaments and prominences show short-lived horizontal threads
lying parallel to the photosphere. In this work the possible link between
Rayleigh-Taylor instabilities and thread lifetimes is investigated. This is
done by calculating the eigenmodes of a thread modelled as a Cartesian slab
under the presence of gravity. An analytical dispersion relation is derived
using the incompressible assumption for the magnetohydrodynamic (MHD)
perturbations. The system allows a mode that is always stable, independently of
the value of the Alfv\'en speed in the thread. The character of this mode
varies from being localised at the upper interface of the slab when the
magnetic field is weak, to having a global nature and resembling the transverse
kink mode when the magnetic field is strong. On the contrary, the slab model
permits another mode that is unstable and localised at the lower interface when
the magnetic field is weak. The growth rates of this mode can be very short, of
the order of minutes for typical thread conditions. This Rayleigh-Taylor
unstable mode becomes stable when the magnetic field is increased, and in the
limit of strong magnetic field it is essentially a sausage magnetic mode. The
gravity force might have a strong effect on the modes of oscillation of
threads, depending on the value of the Alfv\'en speed. In the case of threads
in quiescent filaments, where the Alfv\'en speed is presumably low, very short
lifetimes are expected according to the slab model. In active region
prominences, the stabilising effect of the magnetic tension might be enough to
suppress the Rayleigh-Taylor instability for a wide range of wavelengths
A weakly nonlinear Alfvénic pulse in a transversely inhomogeneous medium
The interaction of a weakly nonlinear Alfvénic pulse with an Alfvén speed inhomogeneity in the direction perpendicular to the magnetic field is investigated. Identical to the phase mixing experienced by a harmonic Alfvén wave, sharp transverse gradients are generated in the pulse by the inhomogeneity. In the initial stage of the evolution of an initially plane Alfvénic pulse, the transverse gradients efficiently generate transversely propagating fast magnetoacoustic waves. However, high resolution full MHD numerical simulations of the developed stage of the pulse evolution show that the generation saturates due to destructive wave interference. It is shown that the weakly non-linear description of the generated fast magnetoacoustic wave is well described by the driven wave equation proposed in Nakariakov et al. (1997), and a simple numerical code (2D MacCromack), which solves it with minimal CPU resources, produces identical results to those obtained from the full MHD code (Lare2d, Arber et al. 2001). A parametric study of the phenomenon is undertaken, showing that, contrary to one's expectations, steeper inhomogeneities of the Alfvén speed do not produce higher saturation levels of the fast wave generation. There is a certain optimal gradient of the inhomogeneity that ensures the maximal efficiency of the fast wave generation
High cadence spectropolarimetry of moving magnetic features observed around a pore
Moving magnetic features (MMFs) are small-size magnetic elements that are
seen to stream out from sunspots, generally during their decay phase. Several
observational results presented in the literature suggest them to be closely
related to magnetic filaments that extend from the penumbra of the parent spot.
Nevertheless, few observations of MMFs streaming out from spots without
penumbra have been reported. The literature still lacks of analyses of the
physical properties of these features.
We investigate physical properties of monopolar MMFs observed around a small
pore that had developed penumbra in the days preceding our observations and
compare our results with those reported in the literature for features observed
around sunspots. We analyzed NOAA 11005 during its decay phase with data
acquired at the Dunn Solar Telescope in the FeI 617.3
nm spectral lines with IBIS, and in the G-band. The field of view showed
monopolar MMFs of both polarities streaming out from the leading negative
polarity pore of the observed active region. Combining different analyses of
the data, we investigated the temporal evolution of the relevant physical
quantities associated with the MMFs as well as the photospheric and
chromospheric signatures of these features.
We show that the characteristics of the investigated MMFs agree with those
reported in the literature for MMFs that stream out from spots with penumbrae.
Moreover, observations of at least two of the observed features suggest them to
be manifestations of emerging magnetic arches.Comment: Accepted by A&
- …
