18 research outputs found

    Degradation of haloaromatic compounds

    Get PDF
    An ever increasing number of halogenated organic compounds has been produced by industry in the last few decades. These compounds are employed as biocides, for synthetic polymers, as solvents, and as synthetic intermediates. Production figures are often incomplete, and total production has frequently to be extrapolated from estimates for individual countries. Compounds of this type as a rule are highly persistent against biodegradation and belong, as "recalcitrant" chemicals, to the class of so-called xenobiotics. This term is used to characterise chemical substances which have no or limited structural analogy to natural compounds for which degradation pathways have evolved over billions of years. Xenobiotics frequently have some common features. e.g. high octanol/water partitioning coefficients and low water solubility which makes for a high accumulation ratio in the biosphere (bioaccumulation potential). Recalcitrant compounds therefore are found accumulated in mammals, especially in fat tissue, animal milk supplies and also in human milk. Highly sophisticated analytical techniques have been developed for the detection of organochlorines at the trace and ultratrace level

    Molecular Alterations in Skeletal Muscle in Rheumatoid Arthritis are Related to Disease Activity, Physical Inactivity, and Disability.

    Get PDF
    BACKGROUND: To identify molecular alterations in skeletal muscle in rheumatoid arthritis (RA) that may contribute to ongoing disability in RA. METHODS: Persons with seropositive or erosive RA (n = 51) and control subjects matched for age, gender, race, body mass index (BMI), and physical activity (n = 51) underwent assessment of disease activity, disability, pain, physical activity and thigh muscle biopsies. Muscle tissue was used for measurement of pro-inflammatory markers, transcriptomics, and comprehensive profiling of metabolic intermediates. Groups were compared using mixed models. Bivariate associations were assessed with Spearman correlation. RESULTS: Compared to controls, patients with RA had 75% greater muscle concentrations of IL-6 protein (p = 0.006). In patients with RA, muscle concentrations of inflammatory markers were positively associated (p \u3c 0.05 for all) with disease activity (IL-1β, IL-8), disability (IL-1β, IL-6), pain (IL-1β, TNF-α, toll-like receptor (TLR)-4), and physical inactivity (IL-1β, IL-6). Muscle cytokines were not related to corresponding systemic cytokines. Prominent among the gene sets differentially expressed in muscles in RA versus controls were those involved in skeletal muscle repair processes and glycolytic metabolism. Metabolic profiling revealed 46% higher concentrations of pyruvate in muscle in RA (p \u3c 0.05), and strong positive correlation between levels of amino acids involved in fibrosis (arginine, ornithine, proline, and glycine) and disability (p \u3c 0.05). CONCLUSION: RA is accompanied by broad-ranging molecular alterations in skeletal muscle. Analysis of inflammatory markers, gene expression, and metabolic intermediates linked disease-related disruptions in muscle inflammatory signaling, remodeling, and metabolic programming to physical inactivity and disability. Thus, skeletal muscle dysfunction might contribute to a viscous cycle of RA disease activity, physical inactivity, and disability

    Additional file 1: of Molecular alterations in skeletal muscle in rheumatoid arthritis are related to disease activity, physical inactivity, and disability

    No full text
    Supplemental gene information. Additional detail on genes that were most differentially expressed in muscle from patients with rheumatoid arthritis and from control participants. Genes are described and categorized by the proposed function of their respective gene products (DOCX 88 kb
    corecore