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RESEARCH ARTICLE Open Access

Molecular alterations in skeletal muscle in
rheumatoid arthritis are related to disease
activity, physical inactivity, and disability
Kim M. Huffman1*, Ryan Jessee1, Brian Andonian1, Brittany N. Davis2, Rachel Narowski3, Janet L. Huebner1,
Virginia B. Kraus1, Julie McCracken1, Brian F. Gilmore4, K. Noelle Tune5, Milton Campbell1, Timothy R. Koves1,
Deborah M. Muoio1, Monica J. Hubal6 and William E. Kraus1

Abstract

Background: To identify molecular alterations in skeletal muscle in rheumatoid arthritis (RA) that may contribute to
ongoing disability in RA.

Methods: Persons with seropositive or erosive RA (n = 51) and control subjects matched for age, gender, race,
body mass index (BMI), and physical activity (n = 51) underwent assessment of disease activity, disability, pain,
physical activity and thigh muscle biopsies. Muscle tissue was used for measurement of pro-inflammatory
markers, transcriptomics, and comprehensive profiling of metabolic intermediates. Groups were compared using
mixed models. Bivariate associations were assessed with Spearman correlation.

Results: Compared to controls, patients with RA had 75% greater muscle concentrations of IL-6 protein (p = 0.006). In
patients with RA, muscle concentrations of inflammatory markers were positively associated (p < 0.05 for all)
with disease activity (IL-1β, IL-8), disability (IL-1β, IL-6), pain (IL-1β, TNF-α, toll-like receptor (TLR)-4), and physical
inactivity (IL-1β, IL-6). Muscle cytokines were not related to corresponding systemic cytokines. Prominent
among the gene sets differentially expressed in muscles in RA versus controls were those involved in skeletal
muscle repair processes and glycolytic metabolism. Metabolic profiling revealed 46% higher concentrations of
pyruvate in muscle in RA (p < 0.05), and strong positive correlation between levels of amino acids involved in
fibrosis (arginine, ornithine, proline, and glycine) and disability (p < 0.05).

Conclusion: RA is accompanied by broad-ranging molecular alterations in skeletal muscle. Analysis of inflammatory
markers, gene expression, and metabolic intermediates linked disease-related disruptions in muscle inflammatory
signaling, remodeling, and metabolic programming to physical inactivity and disability. Thus, skeletal muscle
dysfunction might contribute to a viscous cycle of RA disease activity, physical inactivity, and disability.

Keywords: Gene expression, Metabolomics, Satellite cells, Fibrosis, Inflammation

Background
Despite a vast array of pharmacologic agents available to
treat rheumatoid arthritis (RA), management is often
complicated by insufficient treatment response, drug
toxicity and contraindications, poor access to care and/or
medications, and/or damage that predates medical
intervention. These barriers lead to or are accompanied by

systemic manifestations, disease-associated co-morbidities,
chronic pain, physical inactivity, dysmobility, and poor
physical function. Thus, further advances in RA care
require identification of factors contributing to persistent
deficiencies in quality of life and physical function, despite
access to excellent anti-rheumatic medications.
Importantly, inactivity and muscle wasting are two

important contributors to RA-related morbidity and
mortality. Approximately half of patients with RA do
not perform even a single bout of weekly physical exer-
cise [1]. The sedentary lifestyle common to patients
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with RA gives rise to physical deconditioning and muscle
atrophy, both of which are associated with osteopor-
osis, impaired immune function, glucose intolerance,
insulin resistance, loss of independence, and increased
mortality [2].
In addition to physical inactivity, other factors that

likewise promote muscle loss and disability in
patients with RA include inadequate protein inges-
tion, glucocorticoid treatment, and pro-inflammatory
cytokines, all resulting in reduced myocyte protein
synthesis and increased protein degradation [2, 3].
Inflammation can impact normal muscle turnover
and responses to injury, both of which require an
exquisitely coordinated remodeling process involving
activation, proliferation and differentiation of muscle
stem cells—also known as satellite cells. These processes
are mediated largely by signals from intramuscular
immune cells: neutrophils, regulatory T cells, pro-
inflammatory M1 macrophages, and anti-inflammatory
M2 macrophages.
The established roles of inflammation in both skeletal

muscle remodeling and RA pathophysiology raise obvi-
ous questions regarding the potential interplay between
muscle dysfunction and RA morbidity. Whereas the link
between pro-inflammatory cytokines and muscle dys-
function has been investigated intensely in the context
of diseases such as diabetes and cancer cachexia, this
topic has remained surprisingly unexplored in RA. In
the current study we sought to identify molecular per-
turbations in muscle specimens from individuals with
RA, and to test the hypothesis that skeletal muscle in-
flammatory markers and derangements in tissue re-
modeling might contribute to metabolic decline and
disability in these patients. Herein, we report that
disease-activity-related muscle inflammatory markers
are related to physical inactivity, and moreover, that
disrupted skeletal muscle repair processes are associ-
ated with greater disability. These findings support a
model in which skeletal muscle deterioration contrib-
utes to a vicious cycle of disease activity, muscle inflam-
matory signaling and disrupted remodeling, physical
inactivity, and disability in patients with RA.

Methods
Design and participants
This was a cross-sectional investigation of individuals with
RA and matched controls collected from the Durham, NC
area. The RA group met the following criteria: (1) RA
diagnosis meeting American College of Rheumatology
1987 criteria [4]; (2) seropositive disease (positive rheuma-
toid factor or anti-cyclic citrullinated peptide) or evidence
of erosions on hand or foot imaging; (3) no medication
changes within the three months prior to study enroll-
ment; and (4) daily prednisone use ≤5 mg. Healthy

participants without a diagnosis of RA, without joint pain,
and without joint swelling lasting more than a week were
matched to individual participants with RA by gender,
race, age within 3 years, and body mass index (BMI)
within 3 kg/m2. Exclusions included current pregnancy,
type 2 diabetes mellitus, and known coronary artery
disease. Further specific details on questionnaires and
measurement protocols have previously been described
[5]. This study was in compliance with the Helsinki
Declaration and was approved by the Duke University
Institutional Review Board.
Assessments of both groups included questionnaires,

physical exams for disease status, fasting blood collec-
tion, intravenous glucose tolerance tests for insulin sen-
sitivity, 7 days of accelerometer-measured physical
activity, computed tomography (CT) imaging of abdo-
men and thigh, and vastus lateralis muscle biopsies [5].
Disability (health assessment questionnaire-disability
index (HAQ-DI) and co-morbidities (co-morbidity
index) were assessed by previously published question-
naires [6, 7]. Disease activity assessed by the disease ac-
tivity score in 28 joints (DAS-28) was determined from
a patient-completed visual analog scale, physician-
determined numbers of tender and swollen joints, and
erythrocyte sedimentation rate [8]. Plasma concentra-
tions of inflammatory markers and cytokines were
determined by immunoassay [5] and nuclear magnetic
resonance (NMR) spectroscopy (GlycA) [9]. Insulin
sensitivity was determined using Bergman’s minimal
model [10] and concentrations of glucose and insulin
(glucose: Beckman-CoulterDXC600; insulin: electroche-
miluminscent assay from Meso Scale Discovery) at each
of 29 time points during the intravenous glucose toler-
ance test.
Physical activity was measured with 7 days of accel-

erometry. After completing assessments, accelerome-
ters (RT3, Stayhealthy, Inc., Monrovia, CA, USA) were
provided to participants. Participants also received a
pre-addressed and postage-applied box for return and
directions for wearing on the waist above the right knee
during waking hours for 7 days. Accelerometer data
were evaluated for validity and non-wear time, and cat-
egorized into metabolic equivalents (METs) as previ-
ously described [11]. After data cleaning, valid data
were available for 41 persons with RA and 31 controls.
Time spent exercising was defined as the sum of time
spent performing activity at METs equal to or greater
than 3. CT scan analyses were performed using OsiriX
(Pixmeo) to determine adipose and muscle tissue size
and muscle tissue density (greater tissue density is indi-
cative of less inter-muscular adipose tissue) [5]. Stand-
ard Bergstrom needle muscle biopsies were performed
on the vastus lateralis in the fasting state; participants
consumed only water during the 12 hours overnight
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Table 1 Participant characteristics

Variable All participants (n = 102) Rheumatoid arthritis (n = 51) Matched controls (n = 51)

Age (years) 54.2 (12.5) 54.8 (13.2) 53.8 (11.9)

BMI (kg/m2) 30.0 (6.4) 30.3 (7.5) 29.6 (5.1)

Waist circumference (cm) 94.1 (15.2) 94.9 (16.8) 92.9 (13.3)

Race

Caucasian 74 (72.6%) 36 (70.6%) 38 (74.5%)

African American 27 (26.5%) 14 (27.5%) 13 (25.5%)

Pacific Islander 1 (1.0%) 1 (2.0%) 0

Gender

Female 72 (70.6%) 36 (70.6%) 36 (70.6%)

Male 30 (29.4%) 15 (29.4%) 15 (29.4%)

Physical activity (kCal/day) 557.1 (280.8) 517.7 (279.4) 609.1 (278.7)

Physical activity (MET-hr/day) 5.4 (2.6) 4.9 (2.5) 6.0 (2.5)

Disease duration (months) NA 138.9 (136.3) NA

HAQ-disability index 0.46 (0.6) 0.68 (0.7)* 0.00 (0.0)

Comorbidity index 1.2 (1.2) 1.6 (1.1)* 0.6 (0.9)

DAS-28 mean (SD) NA 3.0 (1.4) NA

Remission (DAS-28 < 2.6) 19 (40%)

Low activity (DAS-28 2.6 3.2) 8 (17%)

Moderate activity (DAS-28 3.2 5.1) 16 (33%)

High activity (DAS-28 > 5.1) 5 (10%)

Rheumatoid factor positive NA 42/47 (89.4%) NA

Anti-cyclic citrullinated antibody positive NA 21/22 (95.6%) NA

Erosions present on radiographs NA 21/38 (55.2%) NA

Medication use NA

Etanercept 10 (19.6%) NA

Infliximab 2 (3.9%) NA

Adalimumab 5 (9.8%) NA

Abatacept 5 (9.8%) NA

Methotrexate 39 (76.5%) NA

Leflunomide 1 (2.0%) NA

Sulfasalazine 0 NA

Hydroxychloroquine 10 (19.6%) NA

Nonsteroidal anti-inflammatory agents 18 (35.3%)* 1 (4.0%)

Prednisone (<5.0 mg/day) 13 (25.5%) NA

Systemic inflammation

hsCRP (mg/L) 3.0 (3.9) 3.7 (4.9)* 2.4 (2.9)

IL-1beta (pg/mL) 0.23 (5.3) 0.22 (4.1) 0.17 (6.4)

IL-6 (pg/mL) 4.9 (2.8) 8.9 (2.9)* 2.7 (1.6)

IL-8 (pg/mL) 8.2 (2.1) 8.9 (1.8) 7.5 (2.3)

TNF-alpha (pg/mL) 13.7 (2.3) 19.9 (2.4)* 9.5 (1.7)

IL-18 (pg/mL) 408.3 (1.4) 440.6 (1.3) 379.3 (1.4)

Adiposity and muscle tissue

Abdominal total adipose area (cm2) 427.9 (181.0) 408.4 (199.5) 447.3 (160.2)

Abdominal subcutaneous adiposity (cm2) 303.3 (143.7) 304.5 (154.2) 302.1 (133.9)
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prior to the biopsy [12]. Tissue was flash frozen in li-
quid nitrogen and stored at −80 ° C.

Skeletal muscle inflammatory marker measurements
Flash frozen muscle samples (5–10 mg) were homoge-
nized in a buffer consisting of 1% Nonidet-P40, 1 mM
EDTA, 150 mM NaCl, and 20 mM Tris-Cl for ELISA-
based measures of muscle (m) interleukin (IL)-1β,
mIL-6, mIL-8, m-tumor necrosis factor (TNF)-α (MSD
4-plex; K15053D-1) and m-toll like receptor (TLR)-4
(Abnova; KA1238). Assays were performed according
to the manufacturers’ directions except for the addition
of a 30-minute, room temperature, blocking step with
5% BSA followed by three PBS-T washes. Concentra-
tions were normalized to starting masses. Spike-and-
recovery assays for all analytes achieved 80–100%
recovery confirming lack of assay interference by
muscle homogenates. For each cytokine, the mean
intra-assay and inter-assay coefficients of variation
were: mIL-1β 8.5%, 13.2%; mIL-6 3.5%, 1.5%; mIL-8
4.0%, 4.0%; mTNF-α 8.4%, 10.4%; and mTLR-4 1.7%
(only one plate was used for analyses).

Gene expression analyses
Muscle samples were selected for gene expression ana-
lyses in an effort to span the range of RA disease activity
seen in the larger sample; these corresponded to the fol-
lowing DAS-28 categories: remission (n = 7), low (n = 4),
moderate (n = 6), and high activity (n = 3). For each RA

muscle sample, the corresponding sample from a control
matched by age, gender, and BMI was included.
For RNA preparation, flash frozen muscle samples

(20–30 mg) were homogenized in 1 mL TRIzol®
(Thermo Fisher Scientific, Inc, Waltham, MA, USA). Bi-
otinylated total RNA was generated using the Illumina
TotalPrep RNA amplification kit (Life Technologies,
Grand Island, NY, USA); 200 nanograms of RNA were
used for the kit. The quality of the RNA was determined
using the Bioanalyzer RNA Nano chip assay (Agilent,
Santa Clara, CA, USA). Quantification of the RNA was
determined using the Quant-iT RiboGreen RNA Assay
Kit. The Human HT-12v3 Expression BeadChip (Illumina,
San Diego, CA, USA) was used for quantitative whole
genome RNA profiling. Biotinylated RNA (750 ng) was
hybridized to the BeadChip and washed; Cy3-SA was then
introduced to the hybridized samples and the BeadChips
scanned on the Illumina iScan system according to manu-
facturer’s protocol. Quality control was performed using
the Illumina GenomeStudio tools.
Gene expression fold-differences between groups were

compared in Partek Genomics Suite (Partek, Inc.; St. Louis,
MO, USA). For pathway analyses, differentially expressed
genes (p < 0.02) were evaluated using the Ingenuity Pathway
Analysis software (IPA, www.ingenuity.com). IPA identified
the canonical pathways containing the greatest number
of significant, differentially expressed genes in the data-
set. IPA also generated novel networks of related genes
and molecules based on the relationships present in the
current literature.

Table 1 Participant characteristics (Continued)

Abdominal visceral adiposity (cm2) 124.6 (93.2) 104.0 (77.1)* 145.2 (103.6)

Abdominal liver density (Hu) 59.0 (11.6) 59.7 (10.6) 58.2 (12.9)

Thigh total area (cm2) 249.6 (65.4) 248.8 (73.6) 251.7 (57.1)

Thigh total adipose area (cm2) 250.2 (66.0) 134.3 (65.8) 110.9 (68.0)

Thigh subcutaneous adiposity (cm2) 122.6 (67.6) 122.6 (62.7) 113.8 (54.0)

Thigh inter-muscular adiposity (cm2) 11.3 (7.4) 11.7 (6.7) 11.0 (8.1)

Thigh muscle area (cm2) 119.6 (35.1) 114.5 (37.1) 125.4 (32.1)

Thigh muscle density (Hu) 54.0 (8.1) 50.7 (6.2) 55.4 (6.8)

Skeletal muscle inflammatory markers

IL-1β (pg/mL/mg) 0.035 (0.084) 0.037 (0.093) 0.033 (0.069)

IL-6 (pg/mL/mg) 0.012 (0.010) 0.014 (0.010)* 0.008 (0.007)

IL-8 (pg/mL/mg) 0.139 (0.178) 0.169 (0.211) 0.097 (0.106)

TNF-α (pg/mL/mg) 0.012 (0.015) 0.014 (0.016) 0.010 (0.014)

TLR4 (pg/mL/mg) 0.891 (0.666) 0.859 (0.692) 0.937 (0.625)

Data are presented as means (SD) for continuous variables and number (percentages) of participants for dichotomous variables. Data that were not normally
distributed (systemic inflammatory markers and cytokines) are presented as geometric means (SD). Physical activity data reflect rheumatoid arthritis (RA) (n = 41)
and controls (n = 31) with valid data. BMI body mass index, MET metabolic equivalents, HAQ health assessment questionnaire, DAS-28 disease activity score with
28-joint count, hsCRP high sensitivity C-reactive protein, IL interleukin, TNF tumor necrosis factor, Hu Houndsfield units, TLR toll-like receptor
*p < 0.05 for comparison with matched controls
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Table 3 Canonical pathways implicated in gene expression in muscle in rheumatoid arthritis

Pathway Dataset genesa in pathway (n) Total genes in pathway (n) Z-score p value

Wnt/Ca + pathway 5 55 0 0.006

Netrin signaling 4 39 NaN 0.008

Glycolysis 3 24 NaN 0.013

Atherosclerosis signaling 7 121 NaN 0.013

Altered T and B cell signaling in rheumatoid arthritis 5 81 NaN 0.023

Methionine degradation to homocysteine 2 16 NaN 0.043

PI3K signaling in B lymphocytes 6 123 −0.816 0.043

April mediated signaling 3 38 NaN 0.044

B cell activating factor signaling 3 40 NaN 0.049
aDataset genes were those differentially expressed between 20 patients with rheumatoid arthritis and 20 age, gender, and body mass index matched controls
(p < 0.02). NaN Not a number

Table 2 Skeletal muscle inflammatory marker correlations in patients with rheumatoid arthritis

Variable Muscle IL-6 Muscle IL-8 Muscle TNF-α Muscle IL-1β Muscle TLR-4

Age (years) −0.07 0.05 0.09 −0.09 −0.29*

BMI (kg/m2) 0.24 −0.05 −0.23 −0.10 −0.25

Disease activity (DAS28) 0.23 0.30* 0.14 0.35* −0.01

Disability (HAQ-DI) 0.33* 0.19 0.09 0.33* 0.12

Pain (VAS) 0.15 0.17 0.29* 0.39* 0.47*

Prednisone use (yes = 1) 0.14 −0.05 0.00 0.01 −0.01

DMARD use (yes = 1) −0.04 −0.07 −0.30 0.21 0.08

Biologic use (yes = 1) −0.25 −0.37* 0.21 −0.33* 0.01

Comorbidity index 0.17 0.12 0.17 0.26 −0.08

Plasma hsCRP (mg/L) 0.20 0.07 0.11 −0.03 −0.17

Plasma IL-1β (pg/mL) 0.01 −0.07 −0.07 −0.14 −0.12

Plasma IL-6 (pg/mL) −0.03 0.11 0.12 −0.01 −0.10

Plasma IL-8 (pg/mL) −0.11 0.06 0.11 0.14 0.02

Plasma TNF-α (pg/mL) −0.37* −0.15 0.02 −0.23 −0.08

Plasma IL-18 (pg/mL) −0.08 −0.12 −0.02 −0.24 0.06

GlycA (μmol/L) 0.41* 0.38* −0.06 0.07 −0.21

HOMA 0.11 0.04 −0.06 −0.10 −0.07

Insulin sensitivity (10-5.min-1/(pmol/L)) −0.20 −0.19 −0.06 −0.09 −0.18

Fasting insulin (mU/L) 0.13 0.09 −0.13 −0.06 −0.06

Visceral adiposity (cm2) 0.11 0.01 −0.28 0.03 −0.23

Abdominal subcutaneous adiposity (cm2) 0.21 0.06 −0.19 −0.06 −0.19

Total abdominal adiposity (cm2) 0.19 0.07 −0.24 −0.06 −0.28

Thigh muscle density (Hu) −0.04 −0.10 0.06 0.16 0.28*

Thigh inter-muscular adiposity (cm2) 0.12 0.01 −0.08 −0.11 −0.12

Thigh subcutaneous adiposity (cm2) 0.31* −0.07 −0.11 −0.09 −0.11

Exercise (min/day) −0.40* −0.38* −0.05 −0.38* −0.11

Physical activity (MET h/day) −0.33* −0.26 0.10 −0.35* −0.15

Data are shown as Spearman correlation coefficients. BMI body mass index, DAS-28 disease activity score with 28 joint count, HAQ-DI health assessment
questionnaire disability index, VAS visual analog scale, DMARD disease-modifying anti-rheumatic drug (methotrexate, leflunomide, hydroxychlorquie), biologic biologic
DMARD (adalimumab, etanercept, infliximab, abatacept), hsCRP high-sensitivity C-reactive protein, IL interleukin, TNF tumor necrosis factor, HOMA homeostasis model
assessment, Hu Houndsfield units, MET metabolic equivalent, TLR toll-like receptor. *p < 0.05 for Spearman correlation
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Skeletal muscle metabolic intermediate measurements
Metabolites were measured in muscle from all partici-
pants (n = 102). Flash frozen muscle biopsies weighing
approximately 25 mg were diluted 20 times (wt:vol) in
ice-cold 50% acetonitrile containing 0.3% formate and
homogenized for 120 sec in a TissueLyser II (Qiagen) at
30 Hz. Amino acids, organic acids, and acylcarnitines
were analyzed using stable isotope dilution techniques in

the Duke Molecular Physiology Metabolomics Core.
Amino acids and acylcarnitine measurements were made
by flow injection tandem mass spectrometry (MS) as
previously described [13, 14]. The data were acquired
using a Micromass Quattro Micro liquid chromatog-
raphy (LC)-MS system running MassLynx 4.0 software
(Waters Corporation, Milford, MA, USA). Organic acids
were quantified using methods described previously [15]

Fig. 1 Novel network identified by muscle gene expression in rheumatoid arthritis (RA): gene expression was determined in muscle from 20
persons with RA and 20 controls matched by age, gender, and body mass index. The network shows connections between genes with
differential expression in RA relative to control muscle. Genes in red were upregulated and genes in green were downregulated in muscle in RA
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employing Trace Ultra GC coupled to ISQ MS operating
under Xcalibur 2.2 (Thermo Fisher Scientific, Austin,
TX, USA). All data are expressed as picomoles/mg
tissue.

Statistical analyses
Accounting for the repeated measures in matched par-
ticipants, patients with RA and controls were compared
using mixed models. Muscle inflammatory molecules
and metabolic intermediates were logarithmically trans-
formed prior to group comparisons. Bivariate associa-
tions were assessed with Spearman correlation. Gene

expression fold-changes were compared in Partek using
analysis of variance (ANOVA). All other statistical ana-
lyses were performed using SAS 9.4 (SAS, Cary, NC).
All data are available from the corresponding author
upon reasonable request.

Results
Clinical measures and skeletal muscle inflammatory
markers
As shown in Table 1, persons with RA were well-
matched to controls by age, gender, and BMI. Patients
with RA were recruited based on the inclusion criteria

Table 4 Novel network genes

Gene ID Gene name RA vs. CONTROL

Fold change p value

BTF3 Basic transcription factor 3 1.11 0.003

CTDP1 CTD (carboxy-terminal domain, RNA polymerase II,
polypeptide A) phosphatase, subunit 1

−1.04 0.006

DDRGK1 DDRGK domain containing 1 −1.07 0.02

DIO1 Deiodinase, iodothyronine, type I 1.03 0.005

EDARADD EDAR-associated death domain −1.06 0.007

EIF2AK1 Eukaryotic translation initiation
factor 2-alpha kinase 1

1.05 0.007

FKBPL FK506 binding protein like −1.06 0.003

GUCY2D Guanylate cyclase 2D, membrane (retina-specific) −1.04 0.004

IFT57 Intraflagellar transport 57 1.04 0.01

IRAK1BP1 Interleukin-1 receptor-associated kinase 1 binding protein 1 1.02 0.02

KMT2C Lysine (K)-specific methyltransferase 2C 1.03 0.01

LAMB1 Laminin, beta 1 1.11 0.02

MAZ MYC-associated zinc finger protein (purine-binding transcription factor) −1.03 0.008

MYL4 Myosin, light chain 4, alkali; atrial, embryonic 1.02 0.01

NFkB2 Nuclear factor of kappa light polypeptide
gene enhancer in B-cells 2 (p52/p100)

−1.06 0.003

NOP14 NOP14 nucleolar protein −1.08 0.008

OGG1 8-Oxoguanine DNA glycosylase 1.03 0.002

PKD2 Polycystic kidney disease 2 (autosomal dominant) 1.05 0.02

POLR2J2/POLR2J3 Polymerase (RNA) II (DNA directed) polypeptide J3 1.08 0.004

PPP4R4 Protein phosphatase 4, regulatory subunit 4 1.03 0.006

RHOH Ras homolog family member H −1.06 0.002

S100B S100 calcium binding protein B 1.02 0.02

SCIN Scinderin 1.04 0.001

STC2 Stanniocalcin 2 1.04 0.008

TAF1 TAF1 RNA polymerase II, TATA box binding protein
(TBP)-associated factor, 250 kDa

1.04 0.02

TNFRSF12A Tumor necrosis factor receptor superfamily, member 12A;
TNF-like weak inducer of apoptosis (TWEAK) receptor

1.24 0.01

TNFRSF18 Tumor necrosis factor receptor superfamily, member 18 −1.02 0.005
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described and without respect to physical activity levels,
body mass or body composition; similarly controls were
included upon matching a patient with RA by age, gen-
der, and BMI. Despite this, patients with RA and con-
trols were similar with respect to physical activity levels,
abdominal and thigh adipose depot size, muscle area, and
muscle density [5, 11]. In those with RA, there was more co-
morbidity, disability, and systemic inflammation; specifically,
greater serum concentrations of high sensitivity C-
reactive protein (hs-CRP), IL-6, and TNF-α (p < 0.05 for
all) [5]. When skeletal muscle inflammatory markers
were compared, there was approximately two times
greater concentrations of the muscle cytokines, mIL-6
(p = 0.006) and mIL-8 in RA (p = 0.059) (Table 1).
Akin to disease activity, RA muscle inflammatory

markers exhibited variation across a broad range
(Table 1). Muscle inflammatory marker concentrations

were positively associated with disease activity (mIL-1β,
mIL-8), disability (mIL-1β, mIL-6), and pain (mIL-1β,
mTNF-α, mTLR-4) (p < 0.05 for all) (Table 2). Muscle
cytokines, mIL-1β and mIL-8, were negatively correlated
with use of biological agents; mTNF-α was negatively
correlated with use of non-biological disease-modifying
therapy (p < 0.05 for all) (Table 2). Importantly, there
were no correlation between muscle inflammatory
marker concentrations and prednisone treatment.
In addition to disease-related factors, muscle cytokine

concentrations (mIL-1β, mIL-6, and mIL-8) were nega-
tively associated with exercise minutes (p < 0.05 for all)
(Table 2). Higher mIL-1β and mIL-6 concentrations
were associated with less total physical activity (total
METs; p < 0.05 for both) (Table 2). Although, both mIL-
6 and mIL-8 were positively correlated with the systemic
inflammatory marker, GlycA (p < 0.05 for both) (Table 2),

Table 5 Genes with the greatest differences in expression between patients with rheumatoid arthritis (RA) and controls

Gene ID Gene name and description Fold change p value

Upregulated in RA

OTUD1 OUT deubiquitinase 1: removes ubiquitin molecules with probable signaling regulatory role 1.50 0.035

FEZ2a Fasciculation and elongation protein zeta 2 (zygin II): reduces autophagy [32]; associated
with reduced cardiorespiratory fitness [33]

1.40 0.005

PITX1a Paired-like homeodomain 1: promotes muscle atrophy [34] 1.37 0.046

RNU4ATAC RNA, U4atac small nuclear (U12-dependent splicing): codes for component of the minor spliceosome [35, 36] 1.36 0.045

ABRAa Actin binding Rho activating protein: promotes myoblast differentiation and myotube maturation [24] 1.33 0.031

RCAN1a Regulator of calcineurin 1: regulates fiber type patterning during differentiation 1.32 0.019

CITED2a Cbp/p300-interacting transactivator, with Glu/Asp-rich carboxy-terminal domain, 2: promotes
stem cell maintenance [22, 23]; prevents myofibril degradation [37]

1.32 0.027

VGLL2a Vestigial-like family member 2: expressed in myotubes [27] 1.30 0.035

MYF6a Myogenic factor 6 (herculin): promotes myoblast terminal differentiation [29] 1.27 0.033

RPL36AL Ribosomal protein L36a-like: ribosomal protein with ability to terminate translation in certain situations [38] 1.27 0.011

Downregulated in RA

FBP2b Fructose-1,6 bisphosphatase 2: promotes glycogen storage [39, 40]; protects mitochondria from
Ca2+ -induced injury [41]

−1.42 0.013

MYLK4a Myosin light chain kinase family, member 4: reduced expression associated with cardiomyopathies [42] −1.37 0.024

ZFP36ac ZFP36 ring finger protein; encodes tristetraprolin (TTP): reduces inflammation and prevents satellite
cell activation [20]

−1.36 0.023

DDIT4a DNA damage-inducible transcript 4; also known as protein regulated in development and damage
response 1 (REDD-1): promotes autophagy, with reduced expression associated with exercise intolerance [43]

−1.34 0.023

MIDNb Midnolin: regulates neurogenesis [44]; reduces pancreatic glycolysis in low glucose states [45] −1.32 0.017

SLC2A5b Solute carrier family 2 (facilitated glucose/fructose transporter), member 5: performs facilitative fructose
uptake into muscle [46]

−1.31 0.041

SLC25A25b Solute carrier family 25 (mitochondrial carrier; phosphate carrier), member 25: promotes anti-atherosclerotic
macrophage ATP production [47]; promotes muscle ATP production and physical endurance [48]

−1.30 0.013

RRADa Ras-related associated with diabetes: increases myoblast proliferation and promotes myotube formation [30] −1.30 0.044

ZBTB16bc Zinc ring finger and BTB domain containing 16: suppresses autoreactive T cells and inflammation [21];
promotes adaptive thermogenesis and mitochondrial capacity [49]

−1.27 0.050

SMTNL2 Smoothelin-like 2: associated with myotube formation [50] −1.22 0.008
aGenes associated with muscle remodeling, satellite cell maturation, or exercise intolerance. See Additional file 1 for more details. bGenes associated
with metabolism
cGenes associated with immune and inflammatory responses
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muscle inflammatory marker concentrations were not
related to insulin sensitivity or systemic cytokine
concentrations.

Skeletal muscle gene expression
To better understand the etiology of RA muscle inflam-
matory markers, we compared RA (n = 20) and control
(n = 20) skeletal muscle gene expression: 1939 genes
were significantly upregulated or downregulated in RA
samples (p < 0.05); 445 genes were identified when using
a more stringent definition of significance (p < 0.02).

To identify other relationships between differentially
expressed RA muscle genes, pathway analyses were per-
formed using IPA, which has thousands of canonical
pathways onto which our experimental gene expression
differences were overlaid. Of those canonical pathways,
IPA identified several pathways impacted by differential
gene expression in muscle in RA (p < 0.05) (Table 3).
Except for glycolysis and methionine degradation, these
canonical pathways were identified because of reduced
RA muscle gene expression for nuclear factor (NF)-kβ2,
both nuclear factor of activated T cells (NFAT)5 and
NFATC4, or all three. Also, none of the canonical

Table 6 Genes involved in skeletal muscle anabolic, catabolic, and inflammatory pathways

Gene ID Gene name Rheumatoid arthritis vs. control

Fold change p value

Ubiquitin-proteasome pathway

MuRF1 Muscle RING-finger protein-1 −1.02 0.25

MuRF2 Muscle-specific RING finger-2 −1.01 0.47

FbxO32 F-box protein 32 1.02 0.88

FbxO40 F-box protein 40 −1.03 0.37

Autophagy-lysozyme pathway

Atg5 Autophagy related 5 −1.01 0.77

Atg7 Autophagy related 7 −1.09 0.13

NAF1 Nuclear assembly factor 1 ribonucleoprotein −1.03 0.12

Lamp2 Lysosomal-associated membrane protein 2 −1.03 0.65

IGF1/Akt signaling pathway

IGF1 Insulin-like growth factor 1 1.00 0.85

Akt1 V-Akt murine thymoma viral oncogene homolog 1 1.00 0.92

Akt2 V-Akt murine thymoma viral oncogene homolog 2 −1.04 0.41

Rptor Regulatory associated protein of MTOR, complex 1 1.02 0.45

Rictor RPTOR independent companion of MTOR, complex 2 1.01 0.54

FoxO1 Forkhead box O1 −1.07 0.34

FoxO3 Forkhead box O3 −1.09 0.39

TGFbeta/Myostatin signaling pathway

ActRIIIB ARP3 actin-related protein 3 homolog B 1.02 0.69

FST Follistatin −1.02 0.30

NFkB signaling pathways

IKBKB Inhibitor of kappa light polypeptide gene enhancer in B cells, kinase beta −1.08 0.17

IKBKAP Inhibitor of kappa light polypeptide gene enhancer in B cells, kinase complex-associated protein 1.001 0.43

TRAF6 TNF receptor-associated factor 6, E3 ubiquitin protein ligase 1.02 0.37

TRADD TNFRSF1A-associated via death domain −1.02 0.46

Bcl3 B-Cell CLL/lymphoma 3 −1.02 0.32

TRAF2 TNF receptor-associated factor 2 −1.00 0.95

TRAF5 TNF receptor-associated factor 5 1.01 0.37

MAPK8 Mitogen-activated protein kinase 8 −1.01 0.32

NFkB1 Homo sapiens nuclear factor of kappa light polypeptide gene enhancer in B cells 1 (p105/p50) −1.00 0.97

NFkB2 Homo sapiens nuclear factor of kappa light polypeptide gene enhancer in B cells 2 (p52/p100) −1.06 0.003
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Table 7 Skeletal muscle metabolic intermediate concentrations

Rheumatoid arthririts
(n = 51)

Controls
(n = 50)

Mean SD Mean SD

Amino acids

Glycine 1012.669 304.568 1042.875 360.089

Alanine 2781.241 876.247 2735.464 820.802

Serine 773.987 190.246 777.726 286.455

Proline 502.861 179.5 528.023 222.984

Valine 291.82 75.004 300.739 99.003

Leucine/isoleucine 659.544 197.996 663.116 233.404

Methionine 54.167 14.36 55.372 17.48

Histidine 488.821 164.605 548.187 276.048

Phenylalanine 77.739 22.414 80.155 27.759

Tyrosine 80.962 23.249 88.815 32.052

Aspartate/asparagine 100.518 62.088 144.672 198.704

Glutamate/glutamine 2096.524 658.272 2359.04 878.482

Ornithine 212.338 85.775 184.849 69.873

Citrulline 69.446 39.718 75.05 50.441

Arginine 431.024 182.215 394.565 149.594

Organic acids

Lactate 22862.683 9246.29 20956.576 8926.553

Pyruvate 1168.544* 604.675 803.474 539.098

Succinate 48.143 35.538 41.793 29.968

Fumarate 70.313 26.403 62.708 25.253

Malate 521.019 205.905 476.648 198.079

alphaKetoglutarate 144.24 143.952 113.438 118.669

Citrate 41.677 33.591 36.853 24.096

Acylcarnitines

Free carnitine: C0 3369.034 1006.646 3631.978 1243.598

C2 455.175 288.39 485.702 312.966

C3 5.206 2.024 5.019 2.018

C4/Ci4 3.541 4.994 3.008 2.594

C5:1 1.033 0.397 1.03 0.41

C5 1.667 1.15 2.246 5.666

C4OH 2.789 2.231 2.378 1.778

C6 3.58 3.882 2.956 2.855

C5OH 0.676 0.363 0.65 0.343

C3DC 0.793 0.356 0.809 0.292

C4DC/Ci4DC 2.439 1.424 2.547 1.192

C8:1 0.531 0.328 0.532 0.252

C8 0.942 0.904 0.826 0.694

C5DC 1.528 1.043 1.43 0.727

C8:1OH/C6:1 DC 0.216 0.129 0.204 0.123

C6DC/C8OH 0.353 0.239 0.388 0.226

C10:3 0.067 0.047 0.067 0.034

Table 7 Skeletal muscle metabolic intermediate concentrations
(Continued)

C10:2 0.05 0.03 0.063 0.041

C10:1 0.261 0.253 0.239 0.164

C10 0.655 0.6 0.58 0.48

C7DC 0.108 0.079 0.088 0.049

C8:1 DC 0.087 0.073 0.093 0.051

C10OH:C8DC 0.305 0.253 0.31 0.21

C12:2 0.052 0.034 0.052 0.035

C12:1 0.364 0.281 0.366 0.287

C12 1.359 1.073 1.31 1.125

C12:2OH/C10:2 DC 0.075 0.045 0.064 0.04

C12:1OH/C10:1 DC 0.224 0.178 0.202 0.114

C12OH/C10DC 0.441 0.472 0.417 0.382

C14:3 0.078 0.052 0.073 0.054

C14:2 1.126 1.025 0.902 0.83

C14:1 2.726 2.354 2.449 2.232

C14 4.156 3.277 3.781 3.373

C14:3OH/C12:3 DC 0.032 0.025 0.028 0.022

C14:2OH/C12:2 DC 0.174 0.121 0.143 0.081

C14:1OH/C12:1 DC 0.704 0.538 0.701 0.431

C14OH/C12DC 0.502 0.525 0.487 0.381

C16:3 0.198 0.164 0.157 0.103

C16:2 1.533 1.201 1.199 0.948

C16:1 6.736 5.227 5.751 3.973

C16 20.041 15.253 17.878 12.497

C16:3OH/C14:3-DC 0.053 0.038 0.045 0.024

C16:2OH/C14:2 DC 0.477 0.336 0.412 0.248

C16:1OH/C14:1 DC 1.306 1.077 1.256 0.834

C16OH/C14DC 1.18 1.265 1.229 1.059

C18:3 1.463 0.982 1.354 0.925

C18:2 20.561 15.909 17.722 13.495

C18:1 46.521 37.117 40.451 28.311

C18 11.278 8.401 10.817 8.203

C18:3OH/C16:3 DC 0.186 0.158 0.168 0.101

C18:2OH/C16:2 DC 1.357 1.235 1.323 1.177

C18:1OH/C16:1 DC 2.683 2.889 2.844 2.749

C18OH/C16DC 0.695 0.68 0.732 0.523

C20:4 2.023 1.801 1.778 1.872

C20:3 0.63 0.597 0.57 0.431

C20:2 0.308 0.271 0.261 0.164

C20:1 0.554 0.484 0.485 0.409

C20 0.369 0.4 0.329 0.308

C20:3OH/C18:3 DC 0.075 0.059 0.074 0.056

C20:2OH/C18:2 DC 0.053 0.034 0.05 0.03

C20:1OH/C18:1 DC 0.071 0.062 0.062 0.046
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pathways was predicted to be activated or inhibited by
gene expression differences in muscle in RA (Z-scores
< |2|) (Table 3) [16].
In addition to canonical networks, pathway analyses

generate novel networks connecting differentially regu-
lated molecules based on published associations. The
IPA-generated novel network with the highest connec-
tion score depicted significant differences in expression
of genes associated with connective tissue, dental, and
dermatological diseases (Fig. 1; Table 4). The prominent
pathway connections in muscle in RA were centered on
regulation of the NF-kB complex, specifically NF-kB2.
These were in the setting of differential regulation of
genes in muscle repair and glycolysis.
To augment traditional pathway analyses, we evalu-

ated the 20 genes with the largest muscle expression
differences in RA and control samples (Table 5) and
examined gene members of well-established skeletal
muscle anabolic, catabolic, and inflammatory path-
ways (Table 6). The top 20 upregulated and downreg-
ulated genes by fold difference were associated with
muscle remodeling, satellite cell maturation, exercise
intolerance, and/or energy metabolism; for these
genes, the range of differences in expression was 20–
50% (Table 5). Except for NF-kB2, there was no dif-
ferential expression of canonical genes involved in
skeletal muscle anabolic, catabolic, or inflammatory
pathways (Table 6).

Skeletal muscle metabolic intermediates
When concentrations of skeletal muscle metabolic inter-
mediates were compared between RA (n = 51) and con-
trols (n = 51), muscle pyruvate concentrations were 46%
greater in muscle in RA than in controls (p < 0.001)
(Table 7). There were no significant differences in the
concentrations of muscle amino acids, other organic
acids, or acylcarnitines in RA compared to controls

(Table 7). However, several muscle amino acids and acyl-
carnitines were related to RA disease activity and disabil-
ity. For instance, greater concentrations of glycine,
serine, aspartate/asparagine, and ornithine and lower
muscle concentrations of alanine and fumarate were re-
lated to greater disease activity (p < 0.05) (Table 8).
Greater muscle concentrations of glycine, proline, orni-
thine, arginine, and aspartate/asparagine were related to
greater disability (p < 0.05) (Fig. 2); in contrast, lower
concentrations of several long-chain unsaturated acylcar-
nitines were related to greater disease activity and dis-
ability (p < 0.05) (Table 8).

Discussion
Here, we report that in RA, skeletal muscle exhibits
molecular alterations in inflammatory markers, tran-
scriptional profiles, and metabolic signatures. Both at
protein and transcriptional levels, muscle had a pro-
inflammatory phenotype in RA. Additionally, differ-
ential gene expression in muscle in RA was indica-
tive of dysregulation of muscle repair, promotion of
glycolysis, and poor mitochondrial function. Upregu-
lated glycolysis and mitochondrial inefficiency were
supported by greater muscle concentrations of the
glycolytic end-product pyruvate in RA. Further, dis-
ease activity and disability were related to lesser con-
centrations of long-chain acylcarnitines and greater
concentrations of amino acid precursors for muscle
fibrosis. Taken together, these alterations in proteins,
gene expression, and metabolic intermediates were
indicative of muscle in RA in a state of chronically
activated, yet dysregulated remodeling with increased
glycolysis, mitochondrial inefficiency, and fibrotic
material (Fig. 2).
This represents the first report of significant markers

of inflammation in muscle in RA. The clinical import-
ance of these molecules is demonstrated by the signifi-
cant association of several muscle cytokines with RA
disease activity, disability, pain, and physical inactivity.
The IPA-generated novel network centered on down-
regulation of NF-kB2, a protein that promotes non-
canonical NF-kB signaling and opposes inflammatory
signaling [17]. Downregulation of NF-kB2 would be
predicted to favor coordinated upregulation of pro-
inflammatory NF-kB signaling in muscle in RA. We
were unable to determine if the muscle cytokines and
pro-inflammatory transcripts in RA were derived from
myocytes, inflammatory cells, or other cellular sources.
Interestingly, muscle cytokine concentrations did not
reflect those measured in circulation, suggesting these
disease-associated inflammatory markers stem from
local rather than systemic events.
Based on the strong relationships between muscle

inflammatory markers and disability, pain and physical

Table 7 Skeletal muscle metabolic intermediate concentrations
(Continued)

C20OHC18DC/C22:6 0.212 0.248 0.198 0.206

C22:5 0.264 0.299 0.247 0.277

C22:4 0.241 0.279 0.193 0.158

C22:3 0.064 0.057 0.056 0.044

C22:2 0.051 0.035 0.044 0.025

C22:1 0.069 0.05 0.065 0.038

C22 0.059 0.049 0.062 0.046

Data are shown as means and standard deviations (pmol/mg tissue). Metabolic
intermediates were measured in muscle homogenates. Group comparisons
between muscle from patients with rheumatoid arthritis and from controls
were performed using logarithmically transformed metabolic intermediates
and mixed models. Prefix C denotes acylcarnitines followed by carbon number
and degree of unsaturation. Suffixes OH and DC denote hydroxyl and
dicarboxyl groups, respectively. *P < 0.05 for comparison with
matched controls
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Table 8 Relationships between rheumatoid arthritis clinical features and muscle metabolic intermediates

Disease activity Disability Pain Exercise (min/d) Physical activity (MET h/d)

Amino acids

Glycine 0.33b 0.50a 0.23 0.11 0.02

Alanine -0.31b 0.03 -0.01 0.11 0.08

Serine 0.31b 0.20 0.17 -0.03 -0.01

Proline 0.20 0.36a 0.09 0.05 0.08

Valine 0.12 0.11 -0.04 0.05 -0.01

Leucine/isoleucine 0.09 0.18 -0.01 -0.08 -0.16

Methionine 0.07 0.16 -0.17 -0.01 -0.04

Histidine -0.08 -0.02 -0.12 0.23 0.19

Phenylalanine -0.06 -0.04 -0.21 0.06 0.04

Tyrosine -0.06 0.08 -0.13 0.13 0.14

Aspartate/asparagine 0.34b 0.36a 0.20 -0.13 -0.12

Glutamate/glutamine 0.20 0.24 0.06 -0.12 -0.04

Ornithine 0.32b 0.39a 0.14 -0.21 -0.20

Citrulline 0.08 0.21 0.13 -0.02 0.13

Arginine 0.27 0.45a 0.24 -0.26 -0.27

Organic acids

Lactate -0.09 -0.18 -0.06 -0.09 -0.12

Pyruvate -0.22 -0.22 -0.21 0.16 0.05

Succinate 0.03 -0.01 0.15 -0.06 -0.12

Fumarate -0.34b -0.24 -0.15 0.05 -0.01

Malate -0.28 -0.14 0.04 -0.01 -0.07

alphaKetoglutarate -0.22 -0.03 -0.03 0.27 0.18

Citrate 0.17 0.23 0.29 0.05 0.14

Acylcarnitines

Free carnitine: C0 -0.10 0.19 0.10 0.04 0.08

C2 -0.07 0.08 0.07 -0.22 -0.02

C3 -0.05 0.10 -0.01 0.10 0.00

C4/Ci4 -0.02 -0.13 -0.20 0.09 0.16

C5:1 0.15 0.09 0.06 -0.10 0.05

C5 0.01 0.05 -0.24 0.14 0.10

C4OH 0.11 0.09 0.11 -0.11 -0.04

C6 0.05 -0.10 -0.24 0.30 0.29

C5OH -0.24 0.04 0.14 0.14 0.25

C3DC -0.17 0.13 0.03 -0.02 0.10

C4DC/Ci4DC 0.02 0.28b 0.05 -0.32b -0.23

C8:1 -0.10 -0.05 -0.15 -0.07 0.00

C8 0.01 -0.11 -0.13 0.16 0.13

C5DC 0.19 0.20 0.03 -0.12 -0.11

C8:1OH/C6:1 DC 0.11 0.21 0.12 -0.05 -0.11

C6DC/C8OH -0.02 0.03 -0.10 0.08 0.11

C10:3 0.02 0.15 0.15 -0.10 -0.09

C10:2 0.00 0.06 -0.05 -0.14 -0.20

C10:1 -0.09 -0.09 -0.08 0.19 0.11
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Table 8 Relationships between rheumatoid arthritis clinical features and muscle metabolic intermediates (Continued)

C10 -0.05 -0.12 -0.13 0.15 0.14

C7DC 0.04 0.13 0.06 -0.20 -0.20

C8:1 DC -0.17 -0.03 -0.13 -0.06 -0.09

C10OH:C8DC -0.08 0.00 -0.15 0.06 0.07

C12:2 0.04 -0.01 -0.08 -0.24 -0.26

C12:1 -0.14 -0.12 -0.13 0.14 0.12

C12 -0.20 -0.22 -0.19 0.20 0.19

C12:2OH/C10:2 DC -0.19 -0.03 -0.14 0.06 0.00

C12:1OH/C10:1 DC -0.19 -0.07 -0.16 0.15 0.18

C12OH/C10DC -0.16 0.03 -0.13 0.13 0.14

C14:3 -0.14 -0.09 -0.15 0.19 0.20

C14:2 -0.22 -0.17 -0.22 0.27 0.26

C14:1 -0.18 -0.16 -0.17 0.21 0.21

C14 -0.25 -0.21 -0.26 0.24 0.22

C14:3OH/C12:3 DC -0.05 0.08 -0.01 -0.03 0.12

C14:2OH/C12:2 DC -0.12 -0.03 -0.20 0.04 0.03

C14:1OH/C12:1 DC -0.24 -0.11 -0.19 0.14 0.17

C14OH/C12DC -0.13 0.03 -0.14 0.16 0.17

C16:3 -0.28 -0.19 -0.22 0.26 0.27

C16:2 -0.34b -0.26 -0.26 0.35a 0.33b

C16:1 -0.28 -0.22 -0.17 0.22 0.18

C16 -0.27 -0.20 -0.19 0.17 0.18

C16:3OH/C14:3-DC -0.16 -0.10 -0.03 0.11 0.19

C16:2OH/C14:2 DC -0.26 -0.16 -0.19 0.12 0.10

C16:1OH/C14:1 DC -0.25 -0.09 -0.21 0.10 0.12

C16OH/C14DC -0.17 0.04 -0.08 0.10 0.12

C18:3 -0.43a -0.36a -0.19 0.20 0.19

C18:2 -0.40a -0.39a -0.19 0.23 0.18

C18:1 -0.33b -0.32b -0.15 0.15 0.13

C18 -0.21 -0.13 -0.12 0.06 0.09

C18:3OH/C16:3 DC -0.29 -0.06 -0.02 0.18 0.18

C18:2OH/C16:2 DC -0.31b -0.06 -0.08 0.12 0.14

C18:1OH/C16:1 DC -0.22 0.02 -0.04 0.06 0.07

C18OH/C16DC -0.18 0.03 -0.08 -0.03 0.00

C20:4 -0.28 -0.30b -0.12 0.26 0.27

C20:3 -0.29b -0.37a -0.11 0.18 0.17

C20:2 -0.25 -0.20 -0.14 0.11 0.14

C20:1 -0.25 -0.16 -0.11 0.07 0.08

C20 -0.18 -0.04 -0.09 -0.02 -0.01

C20:3OH/C18:3 DC 0.09 0.21 -0.01 -0.14 -0.08

C20:2OH/C18:2 DC -0.16 -0.15 0.06 -0.14 -0.14

C20:1OH/C18:1 DC -0.03 0.18 -0.03 0.00 0.04

C20OHC18DC/C22:6 -0.16 0.00 -0.09 -0.05 -0.08

C22:5 -0.28 -0.20 -0.14 0.15 0.09

C22:4 -0.22 -0.24 -0.06 0.07 0.09
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inactivity, we suspected that increased intramuscular
cytokines may be indicative of a disrupted muscle re-
modeling process. In fact, muscle gene expression al-
terations in RA were consistent with promotion of
satellite cell differentiation and upregulation of several
facets of the normally well-coordinated process of
muscle remodeling. For instance, muscle in RA was
characterized by downregulation of ZFP36, the gene
that encodes tristetraprolin (TTP), which reduces in-
flammation by destabilizing pro-inflammatory cyto-
kine transcripts [18, 19] and prevents satellite cell
activation by destabilizing myogenic regulatory factor,
MyoD, mRNA [20]. Thus, the reduction in ZFP36
expression in muscle in RA would be expected to pro-
mote pro-inflammatory cytokine production and satel-
lite cell activation.
Other gene expression changes also suggest both

chronic activation and temporal dysregulation of muscle
remodeling. For instance, downregulation of ZBTB16
would promote inflammation and proliferation of auto-
reactive T cells [21]. In contrast to the reduced ZFP36
expected to promote satellite cell activation, the

increased CITED2 would be expected to reduce satellite
cell activation [22, 23]. Increased expression of ABRA,
RCAN1, VGLL2, MYF6 and decreased expression of
RRAD would promote differentiation of satellite cells
[24–30]. More descriptions of differentially expressed
genes are provided in Additional file 1.
Gene expression alterations indicative of glycolysis

promotion and poor mitochondrial function were sup-
ported by greater muscle concentrations of the glycolytic
end-product pyruvate in RA. Further, disease activity
and disability were related to lower concentrations of
fatty-acid-derived long-chain acylcarnitines. One plaus-
ible explanation for this relationship is that fewer long-
chain acylcarnitines indicate less oxidative metabolism
and fewer mitochondria, consistent with a glycolytic
phenotype. RA disease activity and disability were also
related to higher concentrations of amino acid precur-
sors for muscle fibrosis. M2-type macrophages contain
arginase, which metabolizes arginine to ornithine [31].
Ornithine is converted to proline, which provides a sub-
strate for resident fibroblasts to generate collagen. In
addition to proline, collagen formation also requires

Fig. 2 Schematic depiction of muscle injury repair showing potential impact of cytokine, gene expression, and amino acids on satellite cell
activation, macrophage function, and fibrosis in muscle from patients with rheumatoid arthritis (RA). Boxes show gene IDs for genes differentially
regulated in patients with RA and in controls. See Table 3 for gene descriptions

Table 8 Relationships between rheumatoid arthritis clinical features and muscle metabolic intermediates (Continued)

C22:3 -0.03 -0.11 0.01 -0.06 -0.03

C22:2 0.13 -0.01 -0.06 0.09 0.24

C22:1 0.06 0.01 -0.12 0.28 0.36

C22 -0.02 -0.06 0.00 0.03 0.10

Data are shown as Spearman correlation coefficients. aSignificant relationships (p < 0.05) to all red and green color and bSignificant relationships r ≥ |0.35| to all
bright red and green

Huffman et al. Arthritis Research & Therapy  (2017) 19:12 Page 14 of 17



glycine; glycine and proline each account for a third of
the collagen amino acids. While collagen is critical for
extracellular matrix production, in the setting of a
chronically activated remodeling process, excess collagen
production leads to fibrosis [31]. Thus, the relationships
between these amino acids and disease activity and
disability may indicate a fibrotic process in muscle asso-
ciated with active disease that contributes to RA-
associated disability.
There were several limitations to this study. RA medi-

cation regimens were not uniform among participants,
and effects of these medications on skeletal muscle are
unclear. Twenty-five percent of patients with RA used
prednisone at low doses, which is not expected to have
significant myopathic effects; despite this, they had sig-
nificant alterations in muscle inflammatory markers and
systemic inflammation relative to controls. Without his-
topathologic assessment or single cell isolations, we were
unable to determine the cellular source of muscle cyto-
kines, transcripts, or metabolites. Our findings indicate
that either RA medication regimens or the RA disease
process itself alters skeletal muscle inflammatory mole-
cules, transcriptional profiles, and metabolic pathways.

Conclusions
Taken together, these alterations in pro-inflammatory
cytokines, gene expression, and metabolic intermediates
are indicative of RA muscle in a state of chronically ac-
tivated, yet dysregulated remodeling, with increased
glycolysis, mitochondrial inefficiency, and fibrosis. It is
very likely these changes contribute to the ongoing is-
sues of exercise intolerance and disability in persons
with RA. Future work should be directed at under-
standing whether these deficits may be mitigated by
combining pharmacologic treatment with physical ac-
tivity, to reduce inflammatory signaling and/or fibrosis
while promoting skeletal muscle efficiency. Therefore,
to improve the lives of patients with RA, future work
should be directed toward understanding the role of
skeletal muscle in RA, and interactions between treat-
ment regimens, physical activity, and influences of skel-
etal muscle on the clinical status in RA.

Additional file

Additional file 1: Supplemental gene information. Additional detail on
genes that were most differentially expressed in muscle from patients
with rheumatoid arthritis and from control participants. Genes are
described and categorized by the proposed function of their respective
gene products (DOCX 88 kb)
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