211 research outputs found

    Extracorporeal Photopheresis versus Anticytokine Therapy as a Second-Line Treatment for Steroid-Refractory Acute GVHD: A Multicenter Comparative Analysis

    Get PDF
    AbstractThe optimal therapy for steroid-refractory (SR) acute graft-versus-host disease (aGVHD) is undefined. We studied patients with SR aGVHD, comparing extracorporeal photopheresis (ECP; n = 57) and anticytokine therapy (n = 41). In multivariate analyses, ECP, adjusted for steroid dose (odds ratio, 3.42; P = .007), and grade >II aGVHD (odds ratio, 68; P < .001) were independent predictors of response. ECP therapy, adjusted for conditioning regimen intensity and steroid dose, was associated with superior survival (hazard ratio [HR], 4.6; P = .016) in patients with SR grade II aGVHD. Grade >II aGVHD at onset of salvage therapy (HR, 9.4; P < .001) and lack of response to therapy (HR, 3.09; P = .011) were associated with inferior survival. These findings require validation in a prospective randomized study

    Hubble Space Telescope Imaging of Lyman Alpha Emission at z=4.4

    Get PDF
    We present the highest redshift detections of resolved Lyman alpha emission, using Hubble Space Telescope/ACS F658N narrowband-imaging data taken in parallel with the Wide Field Camera 3 Early Release Science program in the GOODS CDF-S. We detect Lyman alpha emission from three spectroscopically confirmed z = 4.4 Lyman alpha emitting galaxies (LAEs), more than doubling the sample of LAEs with resolved Lyman alpha emission. Comparing the light distribution between the rest-frame ultraviolet continuum and narrowband images, we investigate the escape of Lyman alpha photons at high redshift. While our data do not support a positional offset between the Lyman alpha and rest-frame ultraviolet (UV) continuum emission, the half-light radii in two out of the three galaxies are significantly larger in Lyman alpha than in the rest-frame UV continuum. This result is confirmed when comparing object sizes in a stack of all objects in both bands. Additionally, the narrowband flux detected with HST is significantly less than observed in similar filters from the ground. These results together imply that the Lyman alpha emission is not strictly confined to its indigenous star-forming regions. Rather, the Lyman alpha emission is more extended, with the missing HST flux likely existing in a diffuse outer halo. This suggests that the radiative transfer of Lyman alpha photons in high-redshift LAEs is complicated, with the interstellar-medium geometry and/or outflows playing a significant role in galaxies at these redshifts.Comment: Submitted to the Astrophysical Journal. 11 pages, 10 figure

    Precision Analysis of Evolved Stars

    Get PDF
    Evolved stars dominate galactic spectra, enrich the galactic medium, expand to change their planetary systems, eject winds of a complex nature, produce spectacular nebulae and illuminate them, and transfer material between binary companions. While doing this, they fill the HR diagram with diagnostic loops that write the story of late stellar evolution. Evolved stars sometimes release unfathomable amounts of energy in neutrinos, light, kinetic flow, and gravitational waves. During these late-life times, stars evolve complexly, with expansion, convection, mixing, pulsation, mass loss. Some processes have virtually no spatial symmetries, and are poorly addressed with low-resolution measurements and analysis. Even a "simple" question as how to model mass loss resists solution. However, new methods offer increasingly diagnostic tools. Astrometry reveals populations and groupings. Pulsations/oscillations support study of stellar interiors. Optical/radio interferometry enable 2-3d imagery of atmospheres and shells. Bright stars with rich molecular spectra and velocity fields are a ripe opportunity for imaging with high spatial and spectral resolution, giving insight into the physics and modeling of later stellar evolution

    Precision Analysis of Evolved Stars

    Get PDF
    Evolved stars dominate galactic spectra, enrich the galactic medium, expand to change their planetary systems, eject winds of a complex nature, produce spectacular nebulae and illuminate them, and transfer material between binary companions. While doing this, they fill the HR diagram with diagnostic loops that write the story of late stellar evolution. Evolved stars sometimes release unfathomable amounts of energy in neutrinos, light, kinetic flow, and gravitational waves. During these late-life times, stars evolve complexly, with expansion, convection, mixing, pulsation, mass loss. Some processes have virtually no spatial symmetries, and are poorly addressed with low-resolution measurements and analysis. Even a "simple" question as how to model mass loss resists solution. However, new methods offer increasingly diagnostic tools. Astrometry reveals populations and groupings. Pulsations/oscillations support study of stellar interiors. Optical/radio interferometry enable 2-3d imagery of atmospheres and shells. Bright stars with rich molecular spectra and velocity fields are a ripe opportunity for imaging with high spatial and spectral resolution, giving insight into the physics and modeling of later stellar evolution.Comment: Decadal2020 Science White Paper; 6 pages, 12 figure

    The state of the Martian climate

    Get PDF
    60°N was +2.0°C, relative to the 1981–2010 average value (Fig. 5.1). This marks a new high for the record. The average annual surface air temperature (SAT) anomaly for 2016 for land stations north of starting in 1900, and is a significant increase over the previous highest value of +1.2°C, which was observed in 2007, 2011, and 2015. Average global annual temperatures also showed record values in 2015 and 2016. Currently, the Arctic is warming at more than twice the rate of lower latitudes

    Global assessment of marine plastic exposure risk for oceanic birds

    Get PDF
    Plastic pollution is distributed patchily around the world’s oceans. Likewise, marine organisms that are vulnerable to plastic ingestion or entanglement have uneven distributions. Understanding where wildlife encounters plastic is crucial for targeting research and mitigation. Oceanic seabirds, particularly petrels, frequently ingest plastic, are highly threatened, and cover vast distances during foraging and migration. However, the spatial overlap between petrels and plastics is poorly understood. Here we combine marine plastic density estimates with individual movement data for 7137 birds of 77 petrel species to estimate relative exposure risk. We identify high exposure risk areas in the Mediterranean and Black seas, and the northeast Pacific, northwest Pacific, South Atlantic and southwest Indian oceans. Plastic exposure risk varies greatly among species and populations, and between breeding and non-breeding seasons. Exposure risk is disproportionately high for Threatened species. Outside the Mediterranean and Black seas, exposure risk is highest in the high seas and Exclusive Economic Zones (EEZs) of the USA, Japan, and the UK. Birds generally had higher plastic exposure risk outside the EEZ of the country where they breed. We identify conservation and research priorities, and highlight that international collaboration is key to addressing the impacts of marine plastic on wide-ranging species

    Rare coding variants in PLCG2, ABI3, and TREM2 implicate microglial-mediated innate immunity in Alzheimer's disease

    Get PDF
    We identified rare coding variants associated with Alzheimer’s disease (AD) in a 3-stage case-control study of 85,133 subjects. In stage 1, 34,174 samples were genotyped using a whole-exome microarray. In stage 2, we tested associated variants (P<1×10-4) in 35,962 independent samples using de novo genotyping and imputed genotypes. In stage 3, an additional 14,997 samples were used to test the most significant stage 2 associations (P<5×10-8) using imputed genotypes. We observed 3 novel genome-wide significant (GWS) AD associated non-synonymous variants; a protective variant in PLCG2 (rs72824905/p.P522R, P=5.38×10-10, OR=0.68, MAFcases=0.0059, MAFcontrols=0.0093), a risk variant in ABI3 (rs616338/p.S209F, P=4.56×10-10, OR=1.43, MAFcases=0.011, MAFcontrols=0.008), and a novel GWS variant in TREM2 (rs143332484/p.R62H, P=1.55×10-14, OR=1.67, MAFcases=0.0143, MAFcontrols=0.0089), a known AD susceptibility gene. These protein-coding changes are in genes highly expressed in microglia and highlight an immune-related protein-protein interaction network enriched for previously identified AD risk genes. These genetic findings provide additional evidence that the microglia-mediated innate immune response contributes directly to AD development
    corecore