74 research outputs found

    The Functional Organization of the Left STS: A Large Scale Meta-Analysis of PET and fMRI Studies of Healthy Adults

    Get PDF
    The superior temporal sulcus (STS) in the left hemisphere is functionally diverse, with sub-areas implicated in both linguistic and non-linguistic functions. However, the number and boundaries of distinct functional regions remain to be determined. Here, we present new evidence, from meta-analysis of a large number of positron emission tomography (PET) and functional magnetic resonance imaging (fMRI) studies, of different functional specificity in the left STS supporting a division of its middle to terminal extent into at least three functional areas. The middle portion of the left STS stem (fmSTS) is highly specialized for speech perception and the processing of language material. The posterior portion of the left STS stem (fpSTS) is highly versatile and involved in multiple functions supporting semantic memory and associative thinking. The fpSTS responds to both language and non-language stimuli but the sensitivity to non-language material is greater. The horizontal portion of the left STS stem and terminal ascending branches (ftSTS) display intermediate functional specificity, with the anterior-dorsal ascending branch (fatSTS) supporting executive functions and motor planning and showing greater sensitivity to language material, and the horizontal stem and posterior-ventral ascending branch (fptSTS) supporting primarily semantic processing and displaying greater sensitivity to non-language material. We suggest that the high functional specificity of the left fmSTS for speech is an important means by which the human brain achieves exquisite affinity and efficiency for native speech perception. In contrast, the extreme multi-functionality of the left fpSTS reflects the role of this area as a cortical hub for semantic processing and the extraction of meaning from multiple sources of information. Finally, in the left ftSTS, further functional differentiation between the dorsal and ventral aspect is warranted

    Time-Course of Motor Involvement in Literal and Metaphoric Action Sentence Processing: A TMS Study

    Get PDF
    There is evidence that the motor cortex is involved in reading sentences containing an action verb (“The spike was hammered into the ground”) as well as metaphoric sentences (“The army was hammered in the battle”). Verbs such as ‘hammered’ may be homonyms, with separate meanings belonging to the literal action and metaphoric action, or they may be polysemous, with the metaphoric sense grounded in the literal sense. We investigated the time course of the effects of single-pulse transcranial magnetic stimulation to primary motor cortex on literal and metaphoric sentence comprehension. Stimulation 300 ms post-verb presentation impaired comprehension of both literal and metaphoric sentences, supporting a causal role of sensory-motor areas in comprehension. Results suggest that the literal meaning of an action verb remains activated during metaphor comprehension, even after the temporal window of homonym disambiguation. This suggests that such verbs are polysemous, and both senses are related and grounded in motor cortex

    The neural substrates of natural reading: a comparison of normal and nonword text using eyetracking and fMRI

    Get PDF
    Most previous studies investigating the neural correlates of reading have presented text using serial visual presentation (SVP), which may not fully reflect the underlying processes of natural reading. In the present study, eye movements and BOLD data were collected while subjects either read normal paragraphs naturally or moved their eyes through paragraphs of pseudo-text (pronounceable pseudowords or consonant letter strings) in two pseudo-reading conditions. Eye movement data established that subjects were reading and scanning the stimuli normally. A conjunction fMRI analysis across natural- and pseudo-reading showed that a common eye-movement network including frontal eye fields, supplementary eye fields, and intraparietal sulci was activated, consistent with previous studies using simpler eye movement tasks. In addition, natural reading versus pseudo-reading showed different patterns of brain activation: normal reading produced activation in a well-established language network that included superior temporal gyrus/sulcus, middle temporal gyrus, angular gyrus, inferior frontal gyrus, and middle frontal gyrus, whereas pseudo-reading produced activation in an attentional network that included anterior/posterior cingulate and parietal cortex. These results are consistent with results found in previous single-saccade eye movement tasks and SVP reading studies, suggesting that component processes of eye-movement control and language processing observed in past fMRI research generalize to natural reading. The results also suggest that combining eyetracking and fMRI is a suitable method for investigating the component processes of natural reading in fMRI research

    The functional organization of the left STS: a large scale meta-analysis of PET and fMRI studies of healthy adults

    Get PDF
    The superior temporal sulcus (STS) in the left hemisphere is functionally diverse, with sub-areas implicated in both linguistic and non-linguistic functions. However, the number and boundaries of distinct functional regions remain to be determined. Here, we present new evidence, from meta-analysis of a large number of positron emission tomography (PET) and functional magnetic resonance imaging (fMRI) studies, of different functional specificity in the left STS supporting a division of its middle to terminal extent into at least three functional areas. The middle portion of the left STS stem (fmSTS) is highly specialized for speech perception and the processing of language material. The posterior portion of the left STS stem (fpSTS) is highly versatile and involved in multiple functions supporting semantic memory and associative thinking. The fpSTS responds to both language and non-language stimuli but the sensitivity to non-language material is greater. The horizontal portion of the left STS stem and terminal ascending branches (ftSTS) display intermediate functional specificity, with the anterior ascending branch adjoining the supramarginal gyrus (fatSTS) supporting executive functions and motor planning and showing greater sensitivity to language material, and the horizontal stem and posterior ascending branch adjoining the angular gyrus (fptSTS) supporting primarily semantic processing and displaying greater sensitivity to non-language material. We suggest that the high functional specificity of the left fmSTS for speech is an important means by which the human brain achieves exquisite affinity and efficiency for native speech perception. In contrast, the extreme multi-functionality of the left fpSTS reflects the role of this area as a cortical hub for semantic processing and the extraction of meaning from multiple sources of information. Finally, in the left ftSTS, further functional differentiation between the dorsal and ventral aspect is warranted

    Familiarity Differentially Affects Right Hemisphere Contributions to Processing Metaphors and Literals

    Get PDF
    The role of the two hemispheres in processing metaphoric language is controversial. While some studies have reported a special role of the right hemisphere (RH) in processing metaphors, others indicate no difference in laterality relative to literal language. Some studies have found a role of the RH for novel/unfamiliar metaphors, but not conventional/familiar metaphors. It is not clear, however, whether the role of the RH is specific to metaphor novelty, or whether it reflects processing, reinterpretation or reanalysis of novel/unfamiliar language in general. Here we used functional magnetic resonance imaging (fMRI) to examine the effects of familiarity in both metaphoric and non-metaphoric sentences. A left lateralized network containing the middle and inferior frontal gyri, posterior temporal regions in the left hemisphere (LH), and inferior frontal regions in the RH, was engaged across both metaphoric and non-metaphoric sentences; engagement of this network decreased as familiarity decreased. No region was engaged selectively for greater metaphoric unfamiliarity. An analysis of laterality, however, showed that the contribution of the RH relative to that of LH does increase in a metaphor-specific manner as familiarity decreases. These results show that RH regions, taken by themselves, including commonly reported regions such as the right inferior frontal gyrus (IFG), are responsive to increased cognitive demands of processing unfamiliar stimuli, rather than being metaphor-selective. The division of labor between the two hemispheres, however, does shift towards the right for metaphoric processing. The shift results not because the RH contributes more to metaphoric processing. Rather, relative to its contribution for processing literals, the LH contributes less

    Two-year safety and efficacy of Indigenous Abluminus Sirolimus Eluting Stent. Does it differ amongst diabetics? – Data from en-ABLe- REGISTRY

    Get PDF
    Introduction: To evaluate the efficacy/safety profile of the Abluminus DES+ over 2-years follow-up in the "real-world" scenario in diabetics as compared to non-diabetics. Methods: In prospective, all-comers, open-label registry conducted at 31 sites, patients were analyzed for 1 & 2-year outcomes with the primary endpoint defined as 3P-MACE of CV death, target vessel related myocardial infarction (TV-MI), ischemia-driven target lesion revascularization (TLR)/target vessel revascularization (TVR) apart from Stent thrombosis (ST). Results: Of 2500 patients of PCI with 3286 Abluminus-DES+, 1641 (65.64%) were non-diabetics while859 (34.36%) were diabetics. The 3-P MACE for the cohort at 1 & 2 years were 2.9%, and 3.16%; TLR/TVR - 1.4% at both the intervals for 2493 patients at 2 yrs. follow-up. TV-MI & ST were 0.36% and0.56% at 1st and 2nd year respectively. The 3P-MACE was lower in non-diabetics at 1 & 2 years (2.3%vs 4.2%; 2.4% vs 4.7% respectively). For components of MACE, CV mortality (0.9 vs 1.9% at 1 yr ; 1.0vs 2.1% at 2 years) was significant (P < 0.05) while TLR (1.1 vs 1.9% at 1 yr. & 1.1 vs 2.1% at 2 yrs.) and TV-MI (0.9 vs 1.9% at 1 yr. & 1 vs 2.1% at 2 years) were similar for diabetics and non-diabetics so was ST (P > 0.05). Conclusion: Abluminus-DES+ showed excellent 2-year safety and efficacy with low 3-P MACE which was higher in diabetics driven by higher CV death but similar TLR, TV-MI and ST

    The neural career of sensory-motor metaphors

    Get PDF
    Abstract The role of sensory-motor systems in conceptual understanding has been controversial. It has been proposed than many abstract concepts are understood metaphorically through concrete sensorymotor domains such as actions. Using fMRI, we compared neural responses to literal action (Lit; The daughter grasped the flowers), metaphoric action (Met; The public grasped the idea), and abstract (Abs; The public understood the idea) sentences of varying familiarity. Both Lit and Met sentences activated the left anterior inferior partial lobule (aIPL), an area involved in action planning, with Met sentences also activating a homologous area in the right hemisphere, relative to Abs sentences. Both Met and Abs sentences activated left superior temporal regions associated with abstract language. Importantly, activation in primary motor and biological motion perception regions was inversely correlated with Lit and Met familiarity. These results support the view that the understanding of metaphoric action retains a link to sensory-motor systems involved in action performance. However, the involvement of sensory-motor systems in metaphor understanding changes through a gradual abstraction process whereby relatively detailed simulations are used for understanding unfamiliar metaphors, and these simulations become less detailed and involve only secondary motor regions as familiarity increases. Consistent with these data, we propose that aIPL serves as an interface between sensory-motor and conceptual systems and plays an important role in both domains. The similarity of abstract and metaphoric sentences in the activation of left superior temporal regions suggests that action metaphor understanding is not completely based on sensory-motor simulations, but relies also on abstract lexical-semantic codes

    Specialization along the Left Superior Temporal Sulcus for Auditory Categorization

    Get PDF
    The affinity and temporal course of functional fields in middle and posterior superior temporal cortex for the categorization of complex sounds was examined using functional magnetic resonance imaging (fMRI) and event-related potentials (ERPs) recorded simultaneously. Data were compared before and after subjects were trained to categorize a continuum of unfamiliar nonphonemic auditory patterns with speech-like properties (NP) and a continuum of familiar phonemic patterns (P). fMRI activation for NP increased after training in left posterior superior temporal sulcus (pSTS). The ERP P2 response to NP also increased with training, and its scalp topography was consistent with left posterior superior temporal generators. In contrast, the left middle superior temporal sulcus (mSTS) showed fMRI activation only for P, and this response was not affected by training. The P2 response to P was also independent of training, and its estimated source was more anterior in left superior temporal cortex. Results are consistent with a role for left pSTS in short-term representation of relevant sound features that provide the basis for identifying newly acquired sound categories. Categorization of highly familiar phonemic patterns is mediated by long-term representations in left mSTS. Results provide new insight regarding the function of ventral and dorsal auditory streams

    Decoding Brain Activity Associated with Literal and Metaphoric Sentence Comprehension Using Distributional Semantic Models

    Get PDF
    Recent years have seen a growing interest within the natural language processing (NLP)community in evaluating the ability of semantic models to capture human meaning representation in the brain. Existing research has mainly focused on applying semantic models to de-code brain activity patterns associated with the meaning of individual words, and, more recently, this approach has been extended to sentences and larger text fragments. Our work is the first to investigate metaphor process-ing in the brain in this context. We evaluate a range of semantic models (word embeddings, compositional, and visual models) in their ability to decode brain activity associated with reading of both literal and metaphoric sentences. Our results suggest that compositional models and word embeddings are able to capture differences in the processing of literal and metaphoric sentences, providing sup-port for the idea that the literal meaning is not fully accessible during familiar metaphor comprehension

    Neural Systems for Reading Aloud: A Multiparametric Approach

    Get PDF
    Reading aloud involves computing the sound of a word from its visual form. This may be accomplished 1) by direct associations between spellings and phonology and 2) by computation from orthography to meaning to phonology. These components have been studied in behavioral experiments examining lexical properties such as word frequency; length in letters or phonemes; spelling–sound consistency; semantic factors such as imageability, measures of orthographic, or phonological complexity; and others. Effects of these lexical properties on specific neural systems, however, are poorly understood, partially because high intercorrelations among lexical factors make it difficult to determine if they have independent effects. We addressed this problem by decorrelating several important lexical properties through careful stimulus selection. Functional magnetic resonance imaging data revealed distributed neural systems for mapping orthography directly to phonology, involving left supramarginal, posterior middle temporal, and fusiform gyri. Distinct from these were areas reflecting semantic processing, including left middle temporal gyrus/inferior-temporal sulcus, bilateral angular gyrus, and precuneus/posterior cingulate. Left inferior frontal regions generally showed increased activation with greater task load, suggesting a more general role in attention, working memory, and executive processes. These data offer the first clear evidence, in a single study, for the separate neural correlates of orthography–phonology mapping and semantic access during reading aloud
    corecore