59 research outputs found

    iNKT cell development is orchestrated by different branches of TGF-β signaling

    Get PDF
    Invariant natural killer T (iNKT) cells constitute a distinct subset of T lymphocytes exhibiting important immune-regulatory functions. Although various steps of their differentiation have been well characterized, the factors controlling their development remain poorly documented. Here, we show that TGF-β controls the differentiation program of iNKT cells. We demonstrate that TGF-β signaling carefully and specifically orchestrates several steps of iNKT cell development. In vivo, this multifaceted role of TGF-β involves the concerted action of different pathways of TGF-β signaling. Whereas the Tif-1γ branch controls lineage expansion, the Smad4 branch maintains the maturation stage that is initially repressed by a Tif-1γ/Smad4-independent branch. Thus, these three different branches of TGF-β signaling function in concert as complementary effectors, allowing TGF-β to fine tune the iNKT cell differentiation program

    Dynamic Regulation of Tgf-B Signaling by Tif1γ: A Computational Approach

    Get PDF
    TIF1γ (Transcriptional Intermediary Factor 1 γ) has been implicated in Smad-dependent signaling by Transforming Growth Factor beta (TGF-β). Paradoxically, TIF1γ functions both as a transcriptional repressor or as an alternative transcription factor that promotes TGF-β signaling. Using ordinary differential-equation models, we have investigated the effect of TIF1γ on the dynamics of TGF-β signaling. An integrative model that includes the formation of transient TIF1γ-Smad2-Smad4 ternary complexes is the only one that can account for TGF-β signaling compatible with the different observations reported for TIF1γ. In addition, our model predicts that varying TIF1γ/Smad4 ratios play a critical role in the modulation of the transcriptional signal induced by TGF-β, especially for short stimulation times that mediate higher threshold responses. Chromatin immunoprecipitation analyses and quantification of the expression of TGF-β target genes as a function TIF1γ/Smad4 ratios fully validate this hypothesis. Our integrative model, which successfully unifies the seemingly opposite roles of TIF1γ, also reveals how changing TIF1γ/Smad4 ratios affect the cellular response to stimulation by TGF-β, accounting for a highly graded determination of cell fate

    The NIP7 protein is required for accurate pre-rRNA processing in human cells

    Get PDF
    Eukaryotic ribosome biogenesis requires the function of a large number of trans-acting factors which interact transiently with the nascent pre-rRNA and dissociate as the ribosomal subunits proceed to maturation and export to the cytoplasm. Loss-of-function mutations in human trans-acting factors or ribosome components may lead to genetic syndromes. In a previous study, we have shown association between the SBDS (Shwachman–Bodian–Diamond syndrome) and NIP7 proteins and that downregulation of SBDS in HEK293 affects gene expression at the transcriptional and translational levels. In this study, we show that downregulation of NIP7 affects pre-rRNA processing, causing an imbalance of the 40S/60S subunit ratio. We also identified defects at the pre-rRNA processing level with a decrease of the 34S pre-rRNA concentration and an increase of the 26S and 21S pre-rRNA concentrations, indicating that processing at site 2 is particularly slower in NIP7-depleted cells and showing that NIP7 is required for maturation of the 18S rRNA. The NIP7 protein is restricted to the nuclear compartment and co-sediments with complexes with molecular masses in the range of 40S–80S, suggesting an association to nucleolar pre-ribosomal particles. Downregulation of NIP7 affects cell proliferation, consistently with an important role for NIP7 in rRNA biosynthesis in human cells

    The NIP7 protein is required for accurate pre-rRNA processing in human cells

    Get PDF
    Eukaryotic ribosome biogenesis requires the function of a large number of trans-acting factors which interact transiently with the nascent pre-rRNA and dissociate as the ribosomal subunits proceed to maturation and export to the cytoplasm. Loss-of-function mutations in human trans-acting factors or ribosome components may lead to genetic syndromes. In a previous study, we have shown association between the SBDS (Shwachman–Bodian–Diamond syndrome) and NIP7 proteins and that downregulation of SBDS in HEK293 affects gene expression at the transcriptional and translational levels. In this study, we show that downregulation of NIP7 affects pre-rRNA processing, causing an imbalance of the 40S/60S subunit ratio. We also identified defects at the pre-rRNA processing level with a decrease of the 34S pre-rRNA concentration and an increase of the 26S and 21S pre-rRNA concentrations, indicating that processing at site 2 is particularly slower in NIP7-depleted cells and showing that NIP7 is required for maturation of the 18S rRNA. The NIP7 protein is restricted to the nuclear compartment and co-sediments with complexes with molecular masses in the range of 40S–80S, suggesting an association to nucleolar pre-ribosomal particles. Downregulation of NIP7 affects cell proliferation, consistently with an important role for NIP7 in rRNA biosynthesis in human cells

    Inactivation of TIF1γ Cooperates with KrasG12D to Induce Cystic Tumors of the Pancreas

    Get PDF
    Inactivation of the Transforming Growth Factor Beta (TGFβ) tumor suppressor pathway contributes to the progression of Pancreatic Ductal AdenoCarcinoma (PDAC) since it is inactivated in virtually all cases of this malignancy. Genetic lesions inactivating this pathway contribute to pancreatic tumor progression in mouse models. Transcriptional Intermediary Factor 1 gamma (TIF1γ) has recently been proposed to be involved in TGFβ signaling, functioning as either a positive or negative regulator of the pathway. Here, we addressed the role of TIF1γ in pancreatic carcinogenesis. Using conditional Tif1γ knockout mice (Tif1γlox/lox), we selectively abrogated Tif1γ expression in the pancreas of Pdx1-Cre;Tif1γlox/lox mice. We also generated Pdx1-Cre;LSL-KrasG12D;Tif1γlox/lox mice to address the effect of Tif1γ loss-of-function in precancerous lesions induced by oncogenic KrasG12D. Finally, we analyzed TIF1γ expression in human pancreatic tumors. In our mouse model, we showed that Tif1γ was dispensable for normal pancreatic development but cooperated with Kras activation to induce pancreatic tumors reminiscent of human Intraductal Papillary Mucinous Neoplasms (IPMNs). Interestingly, these cystic lesions resemble those observed in Pdx1-Cre;LSL-KrasG12D;Smad4lox/lox mice described by others. However, distinctive characteristics, such as the systematic presence of endocrine pseudo-islets within the papillary projections, suggest that SMAD4 and TIF1γ don't have strictly redundant functions. Finally, we report that TIF1γ expression is markedly down-regulated in human pancreatic tumors by quantitative RT–PCR and immunohistochemistry supporting the relevance of these findings to human malignancy. This study suggests that TIF1γ is critical for tumor suppression in the pancreas, brings new insight into the genetics of pancreatic cancer, and constitutes a promising model to decipher the respective roles of SMAD4 and TIF1γ in the multifaceted functions of TGFβ in carcinogenesis and development

    Caractérisation fonctionnelle de la proteine FLRG dans le noyau

    No full text
    FLRG, isolé d un remaniement chromosomique observé dans une LLC-B, constitue un régulateur extracellulaire de la fonction biologique de l activine et des BMPs. FLRG interagit avec les protéines ADAM12 et fibronectine et jouerait un rôle important dans la différenciation des ostéoclastes et des cellules hématopoïétiques. La protéine FLRG existe également sous une forme nucléaire qui participerait à un complexe transcriptionnel impliquant le facteur de transcription AF10. En effet, FLRG interagit avec AF10, augmente son pouvoir de transactivation et favorise l oligomérisation de AF10. De plus, des expériences d immunofluorescence réalisées en microscopie confocale montrent une co-localisation de ces deux protéines dans le noyau. Par ailleurs, la surexpression expérimentale de l isoforme nucléaire de FLRG induit un effet anti-prolifératif. Ce travail permet d élargir notre connaissance sur la protéine FLRG et de définir une dualité fonctionnelle de ce facteur sécrété et nucléaireFLRG, identified from a chromosomal translocation in a case of B-CLL, is an extracellular regulator of activin and BMPs biological activities. FLRG interacts with ADAM12 and fibronectin and could play a crucial role in osteoclastic and hematopoietic differentiation. The nuclear form of FLRG protein could be implicated in a transcriptional complex involoving the transcription factor AF10. Indeed, FLRG interacts with AF10, and consequently increases transactivation and oligomerization properties of this latter. In addition, we showed by confocal microscopy that FLRG and AF10 are co-localised in the nucleus. Finally, experimental overexpression of nuclear FLRG displays anti-proliferative effects. Our results extended the knowledge concerning FLRG protein and provide evidence that secreted and nuclear FLRG have distinct functionsLYON1-BU.Sciences (692662101) / SudocSudocFranceF

    Identification of NF-kappaB Responsive Elements in Follistatin Related Gene (FLRG) Promoter

    No full text
    International audienceFollistatin related gene (FLRG) has been previously identified from a chromosomal translocation observed in a B-cell chronic lymphocytic leukemia (B-CLL). FLRG (alternative names: follistatin-related protein, FSRP/follistatin-like-3, FSTL3) is a secreted glycoprotein highly similar to follistatin. Like follistatin, FLRG is involved in the regulation of various biological effects through its binding to members of the transforming growth factor beta (TGFbeta) superfamily such as activin A and myostatin. We have previously shown that TGFbeta and activin A are potent inducers of FLRG transcriptional activation through the Smad proteins. Using a biochemical approach, we investigated whether tumor necrosis factor alpha (TNFalpha) could regulate FLRG expression since TNFalpha plays a critical role in hematopoietic malignancies. We demonstrate that TNFalpha activates FLRG expression at the transcriptional level. This activation depends on a promoter region containing four 107-108 bp DNA repeats, which are evolutionary conserved in primates. These repeats carry a strong phylogenetic signal, which is not common among non-coding sequences. Each DNA repeat contains one TNFalpha responsive element (5'-GGGAGAG/TTCC-3') able to bind nuclear factor kappaB (NF-kappaB) transcription factors. We also show that TGFbeta, through the Smad proteins, potentates the effect of TNFalpha on FLRG expression. This cooperation is unexpected since TGFbeta and TNFalpha usually have opposite biological effects. In all, this work brings new insights in the understanding of FLRG regulation by cytokines and growth factors. It opens attractive perspectives of research that should allow us to better understand the role of FLRG during tumorigenesis
    corecore