199 research outputs found

    Country-wide HIV incidence study complementing HIV surveillance in Germany

    Get PDF
    Serological methods exist that allow differentiating between recent and long-standing infections in persons infected with HIV. During a pilot study in Berlin between 2005 and 2007 methodologies have been evaluated. In a cross-sectional study blood samples, demographic, laboratory, clinical and behavioural data based on a KABP survey were collected from patients with newly diagnosed HIV infections. The BED-CEIA was used to determine recency of infection. Recent HIV infections contributed 54% (CI [95%]: 45; 64) in MSM and 16% (CI [95%]: 0; 39) in patients with other transmission risks (p=0.041). Proportions of recent infections were significantly higher in MSM ≤30 years (p=0.019). The mean age was 33.9 (median 34 years) in recent compared with 38.6 years (median: 38 years) in long-standing infections (p=0.011). High-risk behaviour indicated through very low condom use in recently HIV infected MSM could be identified. The results of the pilot study support expectations that the modified application of the method may contribute to improving HIV prevention efforts in Germany. On this basis the Robert Koch Institute implemented a countrywide HIV incidence study to complement HIV surveillance in early 2008. The study is funded by the German Ministry of Health. Data on recent HIV infections and current HIV transmission risks are collected. Design, methods and impact are described in detail

    Transcription at the proximity of the nuclear pore: A role for the THP1-SAC3-SUS1-CDC31 (THSC) complex

    Get PDF
    4 páginas, 1 figura.A key aspect of eukaryotic gene expression is the coupling of transcription with RNA processing, polyadenylation and export. The use of new techniques based on tandem affinity purification (TAP) and chromatin immunoprecipitation (ChIP), and of genetic and cell biology approaches has contributed to the beginning of deciphering the network of protein-mRNA interactions accompanying this coupling. Although an extensive amount of work has shed light on this matter, the order of participation and precise role of the different proteins remain to be deciphered. It seems that different and sequential protein interactions must converge to finally promote the anchoring of genes to the nuclear periphery. Here we discuss the new data on the coupling of gene expression and RNA export, with emphasis on the THP1-SAC3-SUS1-CDC31 complex and the possible implications of these results on transcription at the nuclear pore.Research in A.A.’s lab is funded by grants from the Spanish Ministry of Science and Education and the Junta de Andalucía.Peer reviewe

    Interactions among mitochondrial proteins altered in glioblastoma

    Get PDF
    Mitochondrial dysfunction is putatively central to glioblastoma (GBM) pathophysiology but there has been no systematic analysis in GBM of the proteins which are integral to mitochondrial function. Alterations in proteins in mitochondrial enriched fractions from patients with GBM were defined with label-free liquid chromatography mass spectrometry. 256 mitochondrially-associated proteins were identified in mitochondrial enriched fractions and 117 of these mitochondrial proteins were markedly (fold-change ≥2) and significantly altered in GBM (p ≤ 0.05). Proteins associated with oxidative damage (including catalase, superoxide dismutase 2, peroxiredoxin 1 and peroxiredoxin 4) were increased in GBM. Protein–protein interaction analysis highlighted a reduction in multiple proteins coupled to energy metabolism (in particular respiratory chain proteins, including 23 complex-I proteins). Qualitative ultrastructural analysis in GBM with electron microscopy showed a notably higher prevalence of mitochondria with cristolysis in GBM. This study highlights the complex mitochondrial proteomic adjustments which occur in GBM pathophysiology

    Hypergravity attenuates Reactivity in Primary Murine Astrocytes

    Get PDF
    Neuronal activity is the key modulator of nearly every aspect of behavior, affecting cognition, learning, and memory as well as motion. Hence, disturbances of the transmission of synaptic signals are the main cause of many neurological disorders. Lesions to nervous tissues are associated with phenotypic changes mediated by astrocytes becoming reactive. Reactive astrocytes form the basis of astrogliosis and glial scar formation. Astrocyte reactivity is often targeted to inhibit axon dystrophy and thus promote neuronal regeneration. Here, we aim to understand the impact of gravitational loading induced by hypergravity to potentially modify key features of astrocyte reactivity. We exposed primary murine astrocytes as a model system closely resembling the in vivo reactivity phenotype on custom-built centrifuges for cultivation as well as for live-cell imaging under hypergravity conditions in a physiological range (2g and 10g). We revealed spreading rates, migration velocities, and stellation to be diminished under 2g hypergravity. In contrast, proliferation and apoptosis rates were not affected. In particular, hypergravity attenuated reactivity induction. We observed cytoskeletal remodeling of actin filaments and microtubules under hypergravity. Hence, the reorganization of these key elements of cell structure demonstrates that fundamental mechanisms on shape and mobility of astrocytes are affected due to altered gravity conditions. In future experiments, potential target molecules for pharmacological interventions that attenuate astrocytic reactivity will be investigated. The ultimate goal is to enhance neuronal regeneration for novel therapeutic approache

    Hypergravity attenuates Reactivity in Primary Murine Astrocytes

    Get PDF
    Neuronal activity is the key modulator of nearly every aspect of behavior, affecting cognition, learning and memory as well as motion. Alterations or even disruptions of the transmission of synaptic signals are the main cause of many neurological disorders. Lesions to nervous tissues are associated with phenotypic changes mediated by astrocytes becoming reactive. Reactive astrocytes form the basis of astrogliosis and glial scar formation. Astrocyte reactivity is often targeted to inhibit axon dystrophy and thus promote neuronal regeneration. Here, we use increased gravitational (mechanical) loading induced by hypergravity to identify a potential method to modify key features of astrocyte reactivity. We exposed primary murine astrocytes as a model system closely resembling the reactivity phenotype in vivo on custom-built centrifuges for cultivation as well as for livecell imaging under hypergravity conditions in a physiological range (2g and 10g). This resulted in significant changes to astrocyte morphology, behavior and reactivity phenotypes, with the ultimate goal being to enhance neuronal regeneration for novel therapeutic approaches

    SKP2 attenuates autophagy through Beclin1-ubiquitination and its inhibition reduces MERS-Coronavirus infection

    Get PDF
    Autophagy is an essential cellular process affecting virus infections and other diseases and Beclin1 (BECN1) is one of its key regulators. Here, we identified S-phase kinase-associated protein 2 (SKP2) as E3 ligase that executes lysine-48-linked poly-ubiquitination of BECN1, thus promoting its proteasomal degradation. SKP2 activity is regulated by phosphorylation in a hetero-complex involving FKBP51, PHLPP, AKT1, and BECN1. Genetic or pharmacological inhibition of SKP2 decreases BECN1 ubiquitination, decreases BECN1 degradation and enhances autophagic flux. Middle East respiratory syndrome coronavirus (MERS-CoV) multiplication results in reduced BECN1 levels and blocks the fusion of autophagosomes and lysosomes. Inhibitors of SKP2 not only enhance autophagy but also reduce the replication of MERS-CoV up to 28,000-fold. The SKP2-BECN1 link constitutes a promising target for host-directed antiviral drugs and possibly other autophagy-sensitive conditions

    The Grizzly, September 9, 2004

    Get PDF
    Make a Difference: How to Register to Vote • Computer Thefts Under Investigation • Republicans say Yes to Four More Years with Bush • A Costly Look at Carelessness • STAR Sponsors One Night • Turnpike Tolls Increase for Commuters • Insider\u27s Tips to Undergraduate and Graduate Awards • Been to Synagogue Lately? • Safety First • Segregation by Letter? • The Pop-up Problem • UC Fringe Festival Opens Wednesday • Parking at Ursinus Robs Convenience • Opinions: Is Technology Making Life Easier or Lazier?; Life During Wartime; Lick it, Stamp it, Mail it and then Rock the Vote • 2004 Bears Football Outlook • UC Hires new Cross Country / Track & Field Coach • Now that Stanton is Gone: Men\u27s Basketball Preview • Bearcox Preview • Olympic Games: Competitive or Controversial?https://digitalcommons.ursinus.edu/grizzlynews/1563/thumbnail.jp

    Relations between lipoprotein(a) concentrations, LPA genetic variants, and the risk of mortality in patients with established coronary heart disease: a molecular and genetic association study

    Get PDF
    Background: Lipoprotein(a) concentrations in plasma are associated with cardiovascular risk in the general population. Whether lipoprotein(a) concentrations or LPA genetic variants predict long-term mortality in patients with established coronary heart disease remains less clear. Methods: We obtained data from 3313 patients with established coronary heart disease in the Ludwigshafen Risk and Cardiovascular Health (LURIC) study. We tested associations of tertiles of lipoprotein(a) concentration in plasma and two LPA single-nucleotide polymorphisms ([SNPs] rs10455872 and rs3798220) with all-cause mortality and cardiovascular mortality by Cox regression analysis and with severity of disease by generalised linear modelling, with and without adjustment for age, sex, diabetes diagnosis, systolic blood pressure, BMI, smoking status, estimated glomerular filtration rate, LDL-cholesterol concentration, and use of lipid-lowering therapy. Results for plasma lipoprotein(a) concentrations were validated in five independent studies involving 10 195 patients with established coronary heart disease. Results for genetic associations were replicated through large-scale collaborative analysis in the GENIUS-CHD consortium, comprising 106 353 patients with established coronary heart disease and 19 332 deaths in 22 studies or cohorts. Findings: The median follow-up was 9·9 years. Increased severity of coronary heart disease was associated with lipoprotein(a) concentrations in plasma in the highest tertile (adjusted hazard radio [HR] 1·44, 95% CI 1·14–1·83) and the presence of either LPA SNP (1·88, 1·40–2·53). No associations were found in LURIC with all-cause mortality (highest tertile of lipoprotein(a) concentration in plasma 0·95, 0·81–1·11 and either LPA SNP 1·10, 0·92–1·31) or cardiovascular mortality (0·99, 0·81–1·2 and 1·13, 0·90–1·40, respectively) or in the validation studies. Interpretation: In patients with prevalent coronary heart disease, lipoprotein(a) concentrations and genetic variants showed no associations with mortality. We conclude that these variables are not useful risk factors to measure to predict progression to death after coronary heart disease is established. Funding: Seventh Framework Programme for Research and Technical Development (AtheroRemo and RiskyCAD), INTERREG IV Oberrhein Programme, Deutsche Nierenstiftung, Else-Kroener Fresenius Foundation, Deutsche Stiftung für Herzforschung, Deutsche Forschungsgemeinschaft, Saarland University, German Federal Ministry of Education and Research, Willy Robert Pitzer Foundation, and Waldburg-Zeil Clinics Isny

    Joint Modeling of Immune Reconstitution Post Haploidentical Stem Cell Transplantation in Pediatric Patients With Acute Leukemia Comparing CD34+-Selected to CD3/CD19-Depleted Grafts in a Retrospective Multicenter Study

    Get PDF
    Rapid immune reconstitution (IR) following stem cell transplantation (SCT) is essential for a favorable outcome. The optimization of graft composition should not only enable a sufficient IR but also improve graft vs. leukemia/tumor effects, overcome infectious complications and, finally, improve patient survival. Especially in haploidentical SCT, the optimization of graft composition is controversial. Therefore, we analyzed the influence of graft manipulation on IR in 40 patients with acute leukemia in remission. We examined the cell recovery post haploidentical SCT in patients receiving a CD34+-selected or CD3/CD19-depleted graft, considering the applied conditioning regimen. We used joint model analysis for overall survival (OS) and analyzed the dynamics of age-adjusted leukocytes; lymphocytes; monocytes; CD3+, CD3+CD4+, and CD3+CD8+ T cells; natural killer (NK) cells; and B cells over the course of time after SCT. Lymphocytes, NK cells, and B cells expanded more rapidly after SCT with CD34+-selected grafts (P = 0.036, P = 0.002, and P < 0.001, respectively). Contrarily, CD3+CD4+ helper T cells recovered delayer in the CD34 selected group (P = 0.026). Furthermore, reduced intensity conditioning facilitated faster immune recovery of lymphocytes and T cells and their subsets (P < 0.001). However, the immune recovery for NK cells and B cells was comparable for patients who received reduced-intensity or full preparative regimens. Dynamics of all cell types had a significant influence on OS, which did not differ between patients receiving CD34+-selected and those receiving CD3/CD19-depleted grafts. In conclusion, cell reconstitution dynamics showed complex diversity with regard to the graft manufacturing procedure and conditioning regimen
    • …
    corecore