503 research outputs found

    A Global Analog of Cheshire Charge

    Full text link
    It is shown that a model with a spontaneously broken global symmetry can support defects analogous to Alice strings, and a process analogous to Cheshire charge exchange can take place. A possible realization in superfluid He-3 is pointed out.Comment: 24 pages (figures 1-4 included as uu-encoded tar files), CALT-68-1865 (Revised version: an expression (eq. 17) for global charge density is corrected; some typos and sign mismatches are removed.

    Causality - Complexity - Consistency: Can Space-Time Be Based on Logic and Computation?

    Full text link
    The difficulty of explaining non-local correlations in a fixed causal structure sheds new light on the old debate on whether space and time are to be seen as fundamental. Refraining from assuming space-time as given a priori has a number of consequences. First, the usual definitions of randomness depend on a causal structure and turn meaningless. So motivated, we propose an intrinsic, physically motivated measure for the randomness of a string of bits: its length minus its normalized work value, a quantity we closely relate to its Kolmogorov complexity (the length of the shortest program making a universal Turing machine output this string). We test this alternative concept of randomness for the example of non-local correlations, and we end up with a reasoning that leads to similar conclusions as in, but is conceptually more direct than, the probabilistic view since only the outcomes of measurements that can actually all be carried out together are put into relation to each other. In the same context-free spirit, we connect the logical reversibility of an evolution to the second law of thermodynamics and the arrow of time. Refining this, we end up with a speculation on the emergence of a space-time structure on bit strings in terms of data-compressibility relations. Finally, we show that logical consistency, by which we replace the abandoned causality, it strictly weaker a constraint than the latter in the multi-party case.Comment: 17 pages, 16 figures, small correction

    Homophily and Contagion Are Generically Confounded in Observational Social Network Studies

    Full text link
    We consider processes on social networks that can potentially involve three factors: homophily, or the formation of social ties due to matching individual traits; social contagion, also known as social influence; and the causal effect of an individual's covariates on their behavior or other measurable responses. We show that, generically, all of these are confounded with each other. Distinguishing them from one another requires strong assumptions on the parametrization of the social process or on the adequacy of the covariates used (or both). In particular we demonstrate, with simple examples, that asymmetries in regression coefficients cannot identify causal effects, and that very simple models of imitation (a form of social contagion) can produce substantial correlations between an individual's enduring traits and their choices, even when there is no intrinsic affinity between them. We also suggest some possible constructive responses to these results.Comment: 27 pages, 9 figures. V2: Revised in response to referees. V3: Ditt

    Adverse prognosis associated with asymmetric myocardial thickening in aortic stenosis

    Get PDF
    Aims: Asymmetric wall thickening has been described in patients with aortic stenosis. However, it remains poorly characterized and its prognostic implications are unclear. We hypothesized this pattern of adaptation is associated with advanced remodelling, left ventricular decompenzation, and a poor prognosis. Methods and results: In a prospective observational cohort study, 166 patients with aortic stenosis (age 69, 69% males, mean aortic valve area 1.0 ± 0.4 cm2) and 37 age and sex-matched healthy volunteers underwent phenotypic characterization with comprehensive clinical, imaging, and biomarker evaluation. Asymmetric wall thickening on both echocardiography and cardiovascular magnetic resonance was defined as regional wall thickening ≥ 13 mm and > 1.5-fold the thickness of the opposing myocardial segment. Although no control subject had asymmetric wall thickening, it was observed in 26% (n = 43) of patients with aortic stenosis using magnetic resonance and 17% (n = 29) using echocardiography. Despite similar demographics, co-morbidities, valve narrowing, myocardial hypertrophy, and fibrosis, patients with asymmetric wall thickening had increased cardiac troponin I and brain natriuretic peptide concentrations (both P < 0.001). Over 28 [22, 33] months of follow-up, asymmetric wall thickening was an independent predictor of aortic valve replacement (AVR) or death whether detected by magnetic resonance [hazard ratio (HR) = 2.15; 95% confidence interval (CI) 1.29-3.59; P = 0.003] or echocardiography (HR = 1.79; 95% CI 1.08-3.69; P = 0.021). Conclusion: Asymmetric wall thickening is common in aortic stenosis and is associated with increased myocardial injury, left ventricular decompenzation, and adverse events. Its presence may help identify patients likely to proceed quickly towards AVR. Clinical Trial Registration: https://clinicaltrials.gov/show/NCT01755936: NCT01755936

    A novel cardiovascular magnetic resonance risk score for predicting mortality following surgical aortic valve replacement

    Get PDF
    The increasing prevalence of patients with aortic stenosis worldwide highlights a clinical need for improved and accurate prediction of clinical outcomes following surgery. We investigated patient demographic and cardiovascular magnetic resonance (CMR) characteristics to formulate a dedicated risk score estimating long-term survival following surgery. We recruited consecutive patients undergoing CMR with gadolinium administration prior to surgical aortic valve replacement from 2003 to 2016 in two UK centres. The outcome was overall mortality. A total of 250 patients were included (68 ± 12 years, male 185 (60%), with pre-operative mean aortic valve area 0.93 ± 0.32cm2, LVEF 62 ± 17%) and followed for 6.0 ± 3.3 years. Sixty-one deaths occurred, with 10-year mortality of 23.6%. Multivariable analysis showed that increasing age (HR 1.04, P = 0.005), use of antiplatelet therapy (HR 0.54, P = 0.027), presence of infarction or midwall late gadolinium enhancement (HR 1.52 and HR 2.14 respectively, combined P = 0.12), higher indexed left ventricular stroke volume (HR 0.98, P = 0.043) and higher left atrial ejection fraction (HR 0.98, P = 0.083) associated with mortality and developed a risk score with good discrimination. This is the first dedicated risk prediction score for patients with aortic stenosis undergoing surgical aortic valve replacement providing an individualised estimate for overall mortality. This model can help clinicians individualising medical and surgical care

    Progression of Hypertrophy and Myocardial Fibrosis in Aortic Stenosis: A Multicenter Cardiac Magnetic Resonance Study

    Get PDF
    Background: Aortic stenosis is accompanied by progressive left ventricular hypertrophy and fibrosis. We investigated the natural history of these processes in asymptomatic patients and their potential reversal post-aortic valve replacement (AVR).  Methods: Asymptomatic and symptomatic patients with aortic stenosis underwent repeat echocardiography and magnetic resonance imaging. Changes in peak aortic-jet velocity, left ventricular mass index, diffuse fibrosis (indexed extracellular volume), and replacement fibrosis (late gadolinium enhancement [LGE]) were quantified.  RESULTS: In 61 asymptomatic patients (43% mild, 34% moderate, and 23% severe aortic stenosis), significant increases in peak aortic-jet velocity, left ventricular mass index, indexed extracellular volume, and LGE mass were observed after 2.1±0.7 years, with the most rapid progression observed in patients with most severe stenosis. Patients with baseline midwall LGE (n=16 [26%]; LGE mass, 2.5 g [0.8–4.8 g]) demonstrated particularly rapid increases in scar burden (78% [50%–158%] increase in LGE mass per year). In 38 symptomatic patients (age, 66±8 years; 76% men) who underwent AVR, there was a 19% (11%–25%) reduction in left ventricular mass index (P<0.0001) and an 11% (4%–16%) reduction in indexed extracellular volume (P=0.003) 0.9±0.3 years after surgery. By contrast midwall LGE (n=10 [26%]; mass, 3.3 g [2.6–8.0 g]) did not change post-AVR (n=10; 3.5 g [2.1–8.0 g]; P=0.23), with no evidence of regression even out to 2 years.  Conclusions: In patients with aortic stenosis, cellular hypertrophy and diffuse fibrosis progress in a rapid and balanced manner but are reversible after AVR. Once established, midwall LGE also accumulates rapidly but is irreversible post valve replacement. Given its adverse long-term prognosis, prompt AVR when midwall LGE is first identified may improve clinical outcomes

    Extracellular Myocardial Volume in Patients With Aortic Stenosis

    Get PDF
    BACKGROUND: Myocardial fibrosis is a key mechanism of left ventricular decompensation in aortic stenosis and can be quantified using cardiovascular magnetic resonance (CMR) measures such as extracellular volume fraction (ECV%). Outcomes following aortic valve intervention may be linked to the presence and extent of myocardial fibrosis. OBJECTIVES: This study sought to determine associations between ECV% and markers of left ventricular decompensation and post-intervention clinical outcomes. METHODS: Patients with severe aortic stenosis underwent CMR, including ECV% quantification using modified Look-Locker inversion recovery-based T1 mapping and late gadolinium enhancement before aortic valve intervention. A central core laboratory quantified CMR parameters. RESULTS: Four-hundred forty patients (age 70 ± 10 years, 59% male) from 10 international centers underwent CMR a median of 15 days (IQR: 4 to 58 days) before aortic valve intervention. ECV% did not vary by scanner manufacturer, magnetic field strength, or T1 mapping sequence (all p > 0.20). ECV% correlated with markers of left ventricular decompensation including left ventricular mass, left atrial volume, New York Heart Association functional class III/IV, late gadolinium enhancement, and lower left ventricular ejection fraction (p < 0.05 for all), the latter 2 associations being independent of all other clinical variables (p = 0.035 and p < 0.001). After a median of 3.8 years (IQR: 2.8 to 4.6 years) of follow-up, 52 patients had died, 14 from adjudicated cardiovascular causes. A progressive increase in all-cause mortality was seen across tertiles of ECV% (17.3, 31.6, and 52.7 deaths per 1,000 patient-years; log-rank test; p = 0.009). Not only was ECV% associated with cardiovascular mortality (p = 0.003), but it was also independently associated with all-cause mortality following adjustment for age, sex, ejection fraction, and late gadolinium enhancement (hazard ratio per percent increase in ECV%: 1.10; 95% confidence interval [1.02 to 1.19]; p = 0.013). CONCLUSIONS: In patients with severe aortic stenosis scheduled for aortic valve intervention, an increased ECV% is a measure of left ventricular decompensation and a powerful independent predictor of mortality

    Imaging and impact of myocardial fibrosis in aortic stenosis

    Get PDF
    Aortic stenosis is characterized both by progressive valve narrowing and the left ventricular remodeling response that ensues. The only effective treatment is aortic valve replacement, which is usually recommended in patients with severe stenosis and evidence of left ventricular decompensation. At present, left ventricular decompensation is most frequently identified by the development of typical symptoms or a marked reduction in left ventricular ejection fraction <50%. However, there is growing interest in using the assessment of myocardial fibrosis as an earlier and more objective marker of left ventricular decompensation, particularly in asymptomatic patients, where guidelines currently rely on non- randomized data and expert consensus. Myocardial fibrosis has major functional consequences, is the key pathological process driving left ventricular decompensation, and can be divided into 2 categories. Replacement fibrosis is irreversible and identified using late gadolinium enhancement on cardiac magnetic resonance, while diffuse fibrosis occurs earlier, is potentially reversible, and can be quantified with cardiac magnetic resonance T1 mapping techniques. There is a substantial body of observational data in this field, but there is now a need for randomized clinical trials of myocardial imaging in aortic stenosis to optimize patient management. This review will discuss the role that myocardial fibrosis plays in aortic stenosis, how it can be imaged, and how these approaches might be used to track myocardial health and improve the timing of aortic valve replacement
    corecore