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BACKGROUND: Aortic stenosis is accompanied by progressive left 
ventricular hypertrophy and fibrosis. We investigated the natural history of 
these processes in asymptomatic patients and their potential reversal post-
aortic valve replacement (AVR).

METHODS: Asymptomatic and symptomatic patients with aortic stenosis 
underwent repeat echocardiography and magnetic resonance imaging. 
Changes in peak aortic-jet velocity, left ventricular mass index, diffuse 
fibrosis (indexed extracellular volume), and replacement fibrosis (late 
gadolinium enhancement [LGE]) were quantified.

RESULTS: In 61 asymptomatic patients (43% mild, 34% moderate, 
and 23% severe aortic stenosis), significant increases in peak aortic-jet 
velocity, left ventricular mass index, indexed extracellular volume, and LGE 
mass were observed after 2.1±0.7 years, with the most rapid progression 
observed in patients with most severe stenosis. Patients with baseline 
midwall LGE (n=16 [26%]; LGE mass, 2.5 g [0.8–4.8 g]) demonstrated 
particularly rapid increases in scar burden (78% [50%–158%] increase in 
LGE mass per year). In 38 symptomatic patients (age, 66±8 years; 76% 
men) who underwent AVR, there was a 19% (11%–25%) reduction in 
left ventricular mass index (P<0.0001) and an 11% (4%–16%) reduction 
in indexed extracellular volume (P=0.003) 0.9±0.3 years after surgery. 
By contrast midwall LGE (n=10 [26%]; mass, 3.3 g [2.6–8.0 g]) did not 
change post-AVR (n=10; 3.5 g [2.1–8.0 g]; P=0.23), with no evidence of 
regression even out to 2 years.

CONCLUSIONS: In patients with aortic stenosis, cellular hypertrophy and 
diffuse fibrosis progress in a rapid and balanced manner but are reversible 
after AVR. Once established, midwall LGE also accumulates rapidly but is 
irreversible post valve replacement. Given its adverse long-term prognosis, 
prompt AVR when midwall LGE is first identified may improve clinical 
outcomes.
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Aortic stenosis (AS) is the most common valve 
disease requiring operative intervention in high-
income countries.1 Traditional assessments of 

AS severity focus on the degree of hemodynamic ob-
struction in the valve. However, the importance of the 
myocardial response to pressure overload has been in-
creasingly appreciated, especially when considering the 
development of symptoms and long-term prognosis 
after valve intervention.2 Left ventricular hypertrophy 
(LVH) initially normalizes wall stress and maintains car-
diac output for many years, if not decades. However, 

with time, the left ventricle (LV) decompensates and the 
patient transitions toward heart failure, symptoms, and 
adverse events.

Pathological studies have suggested that this tran-
sition from hypertrophy to heart failure is driven by a 
combination of myocyte cell death and myocardial 
fibrosis.3 Magnetic resonance imaging (MRI) can detect 
focal myocardial fibrosis using late gadolinium enhance-
ment (LGE) and estimates diffuse interstitial fibrosis with 
T1 mapping. A midwall pattern of LGE observed in AS 
acts as a marker of LV decompensation and is associated 
with an adverse prognosis after surgery.4–8 However, to 
date, we have lacked longitudinal studies to assess how 
LVH and fibrosis progress with time and how aortic valve 
replacement (AVR) affects these processes. The aims of 
this prospective multicenter study were to assess the 
time course of LVH and fibrosis in patients with asymp-
tomatic AS and to determine how they are affected in 
symptomatic patients who undergo AVR.

METHODS
Study Population
Patients were recruited from 2 large prospective observa-
tional MRI studies investigating the natural history of AS 
(NCT01755936, Edinburgh Heart Centre, United Kingdom,7 
and NCT01679431, Quebec Heart and Lung Institute, 
Canada9). In both studies, patients underwent comprehensive 
clinical and echocardiographic assessment including repeat 
MRI. Eligible participants had undergone at least 2 serial MRI 
scans. Symptomatic patients had AVR shortly after baseline 
MRI allowing us to assess the reverse remodeling effect of sur-
gery on repeat scans. The study was conducted in accordance 
with the Declaration of Helsinki and approved by the local 
research committees. Written informed consent was obtained 
from all participants. Study data can be made available to other 
researchers on request to the corresponding author.

Echocardiography
Comprehensive transthoracic echocardiography was per-
formed in all patients to assess AS severity as per clinical 
guidelines (Data Supplement).

Cardiac Magnetic Resonance
MRI was performed using both 1.5T and 3T scanners, and 
standard cine images of the LV were acquired. LGE was per-
formed 15 minutes after administration of gadobutrol. T1 
mapping was performed using the Modified Look-Locker 
Inversion-recovery sequence10 before and 15 to 20 minutes 
after gadolinium contrast administration. Although there 
was variation in the scanners used at the different centers, all 
patients underwent standardized baseline and repeat imag-
ing within their respective institutions (Data Supplement). To 
account for potential interscanner variation in T1 measure-
ments,11 extracellular volume (ECV)–derived T1 mapping 
measures were obtained to normalize myocardial T1 values to 
blood-pool measurements.

CLINICAL PERSPECTIVE

Left ventricular hypertrophy and myocardial fibro-
sis are key processes in aortic stenosis that can be 
assessed by cardiovascular magnetic resonance. 
However, longitudinal changes in myocardial 
hypertrophy and fibrosis before and after aortic 
valve replacement are not well studied. We per-
formed a multicenter prospective cohort study of 
99 subjects who underwent serial echocardiog-
raphy and cardiovascular magnetic resonance 
with assessment of left ventricular mass, diffuse 
fibrosis (T1 mapping), and replacement fibrosis 
(late gadolinium enhancement). Sixty-one sub-
jects were asymptomatic allowing us to assess 
the natural history of hypertrophy and fibrosis for 
2.1±0.7 years. Thirty-eight symptomatic subjects 
underwent aortic valve replacement with repeat 
imaging after 1 year allowing us to assess the left 
ventricular remodeling response to surgery. Our 
data demonstrate that in patients with aortic ste-
nosis, cellular hypertrophy and diffuse interstitial 
fibrosis increase in a balanced and exponential 
manner before reversing (at different rates) after 
aortic valve replacement. Midwall replacement 
fibrosis also accumulates rapidly once established 
in the ventricle but crucially seems irreversible after 
aortic valve replacement. The myocardial scar bur-
den that patients develop while waiting for sur-
gery, therefore, persists into the long term. This is 
an important observation because midwall fibro-
sis has consistently demonstrated an association 
with adverse outcome in a proportionate manner 
across multiple patient cohorts. Our data, there-
fore, suggest that prompt valve replacement as 
soon as midwall fibrosis develops may hold prom-
ise in improving clinical outcomes in patients with 
aortic stenosis, and this hypothesis will be exam-
ined in the currently-recruiting EVOLVED trial (Early 
Valve Replacement guided by Biomarkers of Left 
Ventricular Decompensation in Asymptomatic 
Patients with Severe Aortic Stenosis).
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Image Analysis
Analysis of all MRI scans from both centers was performed at 
the Edinburgh Core Lab using CVI42 (Circle Cardiovascular 
Imaging Inc, Calgary, Canada) by a single reporter (R.J.E.) 
blinded to the scan time point (Data Supplement). Short-
axis cine images were used to calculate ventricular volumes, 
mass, and function. The presence of midwall LGE was deter-
mined both qualitatively and quantitatively by 2 experienced 
operators (R.J.E. and M.R.D.), and its distribution recorded. 
LGE was quantified in a semiautomated manner using a sig-
nal intensity threshold of >3 SDs above the mean value in 
a region of normal myocardium.12 Although segments with 
midwall late enhancement were included in the overall T1 
calculation, segments with subendocardial infarct pattern 
LGE were excluded. ECV fraction (ECV%) and indexed ECV 
(iECV: ECV%× LV end-diastolic myocardial volume nor-
malized to body surface area) were calculated using the 
motion-corrected native and postcontrast T1 maps (Data 
Supplement). We have previously reported the reproducibil-
ity of these measures at 3T13 and demonstrated that iECV 
acts as a marker of LV decompensation in AS, correlates with 
the burden of diffuse fibrosis on histology, and is associated 
with future clinical events.7 Other groups have also recently 
used the same parameter.14

Statistical Analysis
All statistical analyses were performed using GraphPad 
Prism version 7.0 and SPSS version 23. A 2-sided P<0.05 
was considered statistically significant. Given heterogeneity 
in timing of follow-up imaging, changes in the LV remodel-
ing variables were annualized. Annualized change was cal-
culated as the difference between the baseline and final 
follow-up MRI scans, divided by the number of days in 
between time points and multiplied by 365. This approach 
assumes that progression is linear. In a sensitivity analysis, 
we restricted analysis of progression and reverse remodel-
ing in those patients who had repeat imaging at the same 
time interval (2 years in the natural history cohort and 1 
year in the AVR cohort) and examined absolute change in 
the LV remodeling variables.

We assessed the distribution of all continuous variables 
using the Shapiro–Wilk test and presented them as appro-
priate using mean±SD or median (interquartile range). 
Annualized change was assessed using a 1 sample t test or 
Wilcoxon signed-rank test where appropriate to compare 
with a hypothetical mean (or median) of 0. Other compari-
sons were made using the Kruskal–Wallis test where appro-
priate. We presented all categorical variables as percentages 
and used the χ2 test for comparison. Absolute change in 
the sensitivity analysis was analyzed using the paired t test 
or Wilcoxon-matched pairs signed-rank test. Univariate lin-
ear regression was performed on both cohorts to investi-
gate the change in indexed LV mass (LVMi) using variables 
known or suspected to influence LVM change (including 
age, sex, history of hypertension, and valvuloarterial imped-
ance). Multivariable linear regression analysis was then per-
formed with change in LVMi as the dependent variable, and 
the same relevant clinical variables included as covariates. 
R.J.E. had full access to study data and is responsible for 
data integrity and analysis.

RESULTS
Repeat MRI was performed in a total of 99 patients (n=63 
from United Kingdom, n=36 from Canada; Table 1), 38 
underwent AVR (AVR cohort: age, 66±8 years; 76% 
men; peak aortic-jet velocity, 4.70±0.83 m/s) and 61 
remained under medical surveillance without interven-
tion (natural history cohort: age, 61±12 years; 66% 
men; peak aortic-jet velocity, 3.24±0.76 m/s).

Natural History Cohort (LV Remodeling)
At baseline, AS was graded as mild in half of the cohort, 
with the remainder split between moderate (34%) and 
severe (23%; Table 1). No patient had symptoms attrib-
utable to valve disease. Follow-up MRI was performed 
at 2.1±0.7 years after baseline scan.

As expected, AS severity increased (peak aortic-jet 
velocity, 0.15 m/s per year [0–0.29 m/s per year]; mean 
gradient, 3 mm Hg/y [1–5 mm Hg/y]; aortic valve area: 
−0.05 cm2/y [−0.08 to −0.01 cm2/y]; P<0.001 for all; 
Table 2) with concurrent increases in both LVMi (3 g/m2 
per year [1–5 g/m2 per year]; P<0.001) and maximum LV 
wall thickness (0.5 mm/y [0–1 mm/y]; P<0.001). These 
changes were accompanied by a reduction in longitu-
dinal systolic function (−0.5 mm/y [−1.5 to 0.3 mm/y]; 

Table 1. Baseline Characteristics of Patients in the Natural History and 
AVR Cohorts

 
Natural History 
Cohort, n=61

AVR Cohort, 
n=38

Age, y 61±12 66±8

Male sex, n (%) 40 (66) 29 (76)

Body mass index, kg/m2 28.3±5.6 27.3±3.6

Body surface area, m2 1.88±0.21 1.86±0.16

Past medical history

        Hypertension, n (%) 35 (58) 23 (61)

        Diabetes mellitus, n (%) 21 (34) 6 (16)

        Hyperlipidemia, n (%) 17 (28) 19 (50)

        Obstructive coronary artery disease, 
n (%)

15 (25) 16 (42)

        Previous percutaneous coronary 
intervention, n (%)

9 (15) 6 (16)

        Previous coronary artery bypass 
graft, n (%)

3 (5) 0 (0)

        Systolic blood pressure, mm Hg 139±22 146±22

        Diastolic blood pressure, mm Hg 82±11 85±13

Echocardiography

        Aortic stenosis severity, n (%)

         Mild 26 (43) 0

         Moderate 21 (34) 0

         Asymptomatic severe 14 (23) 0

         Symptomatic severe 0 38 (100)

AVR indicates aortic valve replacement.
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P=0.003) and an increase in LV filling pressures (E/e′, 
0.6 /y [−0.4 to 1.3 /y]; P=0.006; Table 3). There was no 
significant change in LV stroke volume or ejection frac-
tion over time (both P≥0.20).

When classified by baseline AS severity, there 
was a stepwise increase in the progression of both 
the valve stenosis severity (change in peak aortic-jet 

velocity: mild AS, 0.05 m/s per year [−0.03 to 0.20 
m/s per year]; moderate AS, 0.16 m/s per year [−0.04 
to 0.29 m/s per year]; and severe AS, 0.33 m/s per 
year [0.16–0.42 m/s per year]; P=0.002) and the 
hypertrophic response (change in LVMi: mild AS, 2 g/
m2 per year [1–4 g/m2 per year]; moderate AS, 3 g/
m2 per year [2–5 g/m2 per year]; and severe AS, 5 g/

Table 2. Baseline and Annualized Change in Markers of Left Ventricular Remodeling Among Patients in the Natural History and AVR Groups

LV Assessment

Natural History Group, n=61 (2.1±0.7 y  
Follow-Up) AVR Group, n=38 (0.9±0.3 y Follow-Up)

Baseline 
Values

Annualized 
Absolute Change, 

units/y P Value
Baseline 
Values Absolute Change

Annualized 
Absolute 

Change, units/y P Value

Indexed left ventricular end-
diastolic volume, mL/m2

70±12 −1 (−4, 2) 0.015 67±15 … −3 (−9, 2) 0.009

Indexed left ventricular end-
systolic volume, mL/m2

18±7 −1 (−3, 1) 0.03 19±13 … −2 (−5, 1) 0.19

Indexed stroke volume, mL/m2 52±9 0 (−3, 2) 0.31 49±8 … −3 (−7, 1) 0.009

Ejection fraction, % 75±8 0 (−2, 4) 0.23 74±8 … 0 (−4, 4) 0.78

Left ventricular mass index, g/m2 75±20 3 (1, 5) <0.0001 93±21 … −10 (−19, −5) <0.0001

Maximum left ventricular wall 
thickness, mm

12±3 0.5 (0, 1) <0.0001 15±3 … −2 (−2, −1) <0.0001

Mass/volume, g/mL 1.09±0.28 0.08 (0.02, 0.14) <0.0001 1.43±0.32 … −0.08 (−0.19, 0.02) 0.003

Longitudinal systolic function, mm 14±3 −0.5 (−1.5, 0.3) 0.0003 12±3 … 1 (−1, 3) 0.10

Indexed left atrial volume, mL/m2 37±12 0 (−3, 3) 0.99 37±11 … −1 (−8, 4) 0.33

Infarct late gadolinium 
enhancement, n (%)

8 (13) … … 5 (13) … … …

Infarct late gadolinium 
enhancement mass, g

7.6±4.5 −0.1 (−1.4, 0.7) 0.56 4.8±2.8 … 0 (−0.7, 1.7) 0.72

Midwall late gadolinium 
enhancement, n (%)

16 (26) … … 10 (26) … … …

Midwall late gadolinium 
enhancement mass, g

2.5 (0.8, 4.8) 1.6 (0.4, 4.1) <0.0001 3.3 (2.6, 8.0) … −0.9 (−1.2, 0.5) 0.22

T1 mapping measures

        Extracellular volume fraction, % 26.6±3.1 0 (−1, 1) 0.80 27.2±2.8 … 1.2 (0.4, 2.2) 0.003

        Total extracellular volume, mL 40±13 0.8 (0.1, 4.0) <0.0001 47±18 … −3 (−12, −1) <0.0001

        Indexed extracellular volume, 
mL/m2

21±6 0.5 (0, 2.3) <0.0001 25±8 … −2 (−3, −1) <0.0001

Echocardiography

        Peak aortic-jet velocity, m/s 3.24±0.76 0.15 (0, 0.29) <0.0001 4.70±0.83 −2.05 (−2.70, 1.56) … <0.0001

        Mean aortic valve gradient, 
mm Hg

24±12 3 (1, 5) <0.0001 52±22 −32 (−44, −26) … <0.0001

        Aortic valve area, cm2 1.08±0.31 −0.05 (−0.08, −0.01) <0.0001 0.79±0.20 0.73 (0.46, 0.91) … <0.0001

        Indexed stroke volume, mL/m2 42±7 0 (−1, 2) 0.31 48±10 … −1 (−9, 4) 0.13

        Mean systolic blood pressure, 
mm Hg

139±22 −1 (−6, 2) 0.011 146±22 … −2 (−22, 11) 0.46

        Valvuloarterial impedance (Zva), 
mm Hg/mL per m2

4.06±0.99 −0.01 (−0.15, 0.20) 0.86 4.29±1.05 −0.60 (−1.19, 0.08) … <0.0001

        E/A ratio 1.1±0.3 0 (−0.1, 0.1) 0.71 1.0±0.3 … 0.16 (−0.06, 0.42) 0.004

        Mean e′, cm/s 7.47±2.34 −0.10 (−0.59, 0.42) 0.20 6.15±2.04 … 1.35 (0.26, 2.91) 0.0004

        E/e′ ratio 10.9 (8.7, 12.8) 0.6 (−0.4, 1.3) 0.006 12.9 (10.2, 18.0) … −1.3 (−4.3, 1.1) 0.02

Variables are expressed as mean±SD or median (IQR) as appropriate. For the annualized changes, the unit is the unit mentioned after the name of the variable 
per year: for example, for indexed left ventricular volumes (mL/m2), the unit for the annualized change is mL/m2 per year. AVR indicates aortic valve replacement; 
and IQR, interquartile range.
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m2 per year [2–9 g/m2 per year]; P=0.07; Table 4; Fig-
ure 1). Indeed, a moderate correlation was observed 
between the rate of peak aortic-jet velocity pro-
gression and the rate of LVMi progression (r=0.41; 
P=0.001) with both baseline and annualized peak 
aortic-jet velocity change being predictors of the rate 
of LVMi progression on univariable analysis. Annual-
ized change in peak aortic-jet velocity was the only 

independent predictor of LVMi progression on multi-
variable analysis (P=0.02; Table 5).

Myocardial Fibrosis
iECV increased over time (0.5 mL/m2 per year [0–2.3 
mL/m2 per year]; P<0.0001; Table  2; Figure  1), with 
progression again appearing to increase in a stepwise 

Table 3.  Diastolic Function Grade at Baseline and Follow-Up in the Natural History and AVR Groups

Diastolic Function Grade, 
n (%)

Natural History Group, n=61 (2.1±0.7 y Follow-Up) AVR Group, n=38 (0.9±0.3 y Follow-Up)

Baseline Follow-Up Baseline Follow-Up

0 5 (8) 0 0 0

1 34 (56) 39 (64) 23 (61) 24 (63)

2 22 (36) 21 (34) 15 (39) 13 (34)

3 0 1 (2) 0 1 (3)

AVR indicates aortic valve replacement.

Table 4. Annualized Change in Markers of Progression and Left Ventricular Remodeling According to Aortic Stenosis Severity in the 
Natural History Group

LV Assessment

Aortic Valve Stenosis Severity

P ValueMild, n=26 Moderate, n=21 Severe, n=14

        Indexed left ventricular end-diastolic volume, mL/m2 
per year

−1 (−5, 3) −1 (−4, 2) −2 (−5, 3) 0.93

        Indexed left ventricular end-systolic volume, mL/m2 per 
year

−1 (−5, 4) −1 (−7, 2) −3 (−5, 3) 0.43

        Indexed stroke volume, mL/m2 per year −1 (−3, 1) 0 (−3, 3) 0 (−3, 2) 0.55

        Ejection fraction, %/y 0 (−3, 2) 0 (−1, 4) 2 (−2, 4) 0.26

        Left ventricular mass index, g/m2 per year 2 (1, 4) 3 (2, 5) 5 (2, 9) 0.07

        Maximum left ventricular wall thickness, mm/y 0.5 (0.0, 1.0) 0.5 (−0.3, 1.2) 0.5 (0.0, 1.0) 0.91

        Mass/volume, g/mL per year 0.06 (−0.01, 0.11) 0.06 (0.02, 0.12) 0.14 (0.08, 0.27) 0.01

        Longitudinal systolic function, mm/y −0.5 (−1.1, 0.3) −1.2 (−2.0, −0.3) −0.1 (−1.5, 0.5) 0.08

        Indexed left atrial volume, mL/m2 per year −1 (−3, 2) 1 (−2, 5) 0 (−5, 2) 0.30

        Infarct late gadolinium enhancement, n (%) 2 (8) 3 (14) 3 (21) …

        Midwall late gadolinium enhancement, n (%) 1 (4) 10 (48) 5 (36) …

        Midwall late gadolinium enhancement mass, g/y 0 1.2 (0.3, 2.4) 4.1 (2.8, 7.2) 0.02

T1 mapping measures

        Extracellular volume fraction, %/y 0 (−1.9, 0.8) 0 (−0.8. 1.7) 0 (0.5, 0.9) 0.61

        Total extracellular volume, mL/y 0.7 (0.0, 1.0) 1.5 (−0.2, 6.8) 3.7 (0.4, 6.0) 0.08

        Indexed extracellular volume, mL/m2 per year 0.3 (−0.1, 0.6) 0.8 (−0.1, 2.9) 2.0 (0.2, 2.9) 0.07

Echocardiography

        Peak aortic-jet velocity, m/s per year 0.05 (−0.03, 0.20) 0.16 (−0.04, 0.29) 0.33 (0.16, 0.42) 0.002

        Mean aortic valve gradient, mm Hg/y 2 (0, 3) 2 (0, 5) 7 (3, 10) <0.001

        Aortic valve area, cm2/y −0.05 (−0.12, −0.02) −0.03 (−0.07, 0.00) −0.06 (−0.09, 0.00) 0.47

        Indexed stroke volume, mL/m2 per year −1 (−2, 1) 0 (−1, 2) 3 (−2, 5) 0.06

        Mean systolic blood pressure, mm Hg/y −2 (−6, 1) −1 (−7, 3) −5 (−15, 1) 0.65

        Valvuloarterial impedance, mm Hg/mL per m2 per year 0 (−0.15, 0.28) 0 (−0.15, 0.49) 0.36 (−0.32, 1.19) 0.50

        E/A ratio 0 (−0.1, 0.1) 0 (−0.1, 0.2) 0 (−0.2, 0.1) 0.91

        Mean e′, cm/s per year −0.17 (−0.56, 0.18) −0.04 (−0.73, 0.58) −0.15 (−0.78, 0.51) 0.82

        E/e′ ratio 0.6 (−0.4, 1.2) −0.1 (−0.9, 1.1) 1.6 (0.9, 2.3) <0.001

Results expressed as median (IQR). IQR indicates interquartile range; and LV, left ventricle.
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manner across patients with mild (0.3 mL/m2 [−0.1 to 
0.6 mL/m2]), moderate (0.8 mL/m2 [−0.1 to 2.9 mL/m2]), 
and severe (2.0 mL/m2 [0.2–2.9 mL/m2]) AS (P=0.07; 
Table 4). Indeed, iECV increased ≈7-fold faster in those 
with severe versus mild AS (P=0.01; Figure 1). By con-
trast, no progression in ECV% was observed over time 

either across the cohort as a whole (0% [−1% to 1%); 
P=0.80) or within severity subgroups (P=0.61).

Midwall LGE was present at baseline in 16 patients 
(26%) and progressed rapidly with time (change in LGE 
mass, 1.6 g/y [0.4–4.1 g/y]; P<0.0001; Table 2), equivalent 
to a relative annual progression of 78% (50%–158%). 

Figure 1. Annualized changes in aortic valve obstruction, left ventricular hypertrophy, and diffuse fibrosis in the natural history and aortic valve replacement (AVR) 
groups. Annualized progression in peak aortic-jet velocity (A), left ventricular mass (B), and diffuse fibrosis (indexed extracellular volume [iECV], C) increased in a 
stepwise fashion with severity of aortic stenosis. The slowest progression for each parameter was observed in patients with mild aortic stenosis and the fastest 
progression in those with severe stenosis. Extracellular volume fraction (ECV%) did not change (D), suggesting balanced progression in cellular hypertrophy and 
interstitial fibrosis. After AVR, there was significant regression in valve obstruction (A), left ventricular mass index (LVMi; B), and iECV (diffuse fibrosis, C). ECV% 
increased (D) suggesting more rapid regression in cellular hypertrophy than interstitial diffuse fibrosis (all P<0.005). *Significant (P<0.005) annualized change 
comparing pre- and post-AVR values for each measure.
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This occurred both at the sites of existing LGE and, in a 
quarter of patients, at remote sites with the development 
of new areas of midwall LGE (Figures  2 and 3). Again 
faster rates of progression were observed in patients with 
more advanced valve stenosis (P=0.02) and greater levels 
of diffuse fibrosis (P=0.019, by tertiles of iECV; Figure 2). 
Moreover, patients with the most midwall LGE at baseline 
demonstrated the fastest subsequent progression (tertile 
1 baseline LGE, 0.3 g/y [0.1–0.9 g/y]; tertile 2, 1.6 g/y 
[1.0–3.8 g/y]; and tertile 3, 4.1 g/y [3.4–7.2 g/y]; P=0.007; 
Figure 2). Eight patients (13%) had a subendocardial pat-
tern of LGE at baseline. On repeat MRI, there were no new 
areas of subendocardial LGE and no change in the sub-
endocardial LGE mass (P=0.56; Table 2), consistent with 
these areas representing previous myocardial infarction.

AVR Cohort (Reverse Remodeling)
Patients underwent AVR for a guideline-based indica-
tion 32 days (13–66 days) after baseline imaging with 
repeat imaging performed 0.9±0.3 years after AVR. 
Twenty-nine patients received a bioprosthetic AVR, 
and in 9 patients, a mechanical prosthesis was used. 
No patient underwent transcatheter valve replacement. 
As expected, echocardiographic assessments of aortic 
valve obstruction improved after surgery (change in 
peak aortic-jet velocity, −2.05 m/s [−2.70 to 1.56 m/s]; 
change in mean gradient, −32 mm Hg [−44 to −26 

mm Hg]; change in aortic valve area, 0.73 cm2 [0.46–
0.91 cm2]; change in valvuloarterial impedance, −0.60 
[−1.19 to 0.08]; all P<0.0001; Table 2).

There was a 19% reduction in LVMi (−10 g/m2 per year 
[−19 to −5 g/m2 per year]; P<0.0001; Table 2) after AVR, 
accompanied by a corresponding reduction in maximal 
LV wall thickness (−2 mm/y [−2 to −1 mm/y]; P<0.0001). 
A moderate correlation was observed between the mag-
nitude of LVM regression and the reduction in peak aor-
tic-jet velocity after valve intervention (ρ=0.35; P=0.03). 
On multivariable regression analysis, a high pre-AVR 
LVMi and the absence of hypertension were both asso-
ciated with greater LVM regression (Table 5) as was a 
lower post-AVR Vmax although this last variable did not 
reach statistical significance (P=0.06).

Measures of LV relaxation and filling pressure improved 
after AVR (mean e′, 1.35 [0.26–2.91]; P=0.0004; E/e′, 
−1.3 [−4.3 to 1.1]; P=0.02), and there was an apparent 
trend toward improved longitudinal LV systolic function 
(1 mm/y [−1 to 3 mm/y]; P=0.10). No change in ejection 
fraction was observed (P=0.78) although the indexed 
end-diastolic LV volume did decrease modestly (−3 mL/
m2 per year [−9 to 2 mL/m2 per year]; P=0.009).

Myocardial Fibrosis
There was a 11% reduction in iECV on repeat imag-
ing after AVR (−2 mL/m2 per year [−3 to −1 mL/m2 

Table 5. Univariable and Multivariable Linear Regression Analysis to Examine the Predictors of Annualized Progression and 
Regression of Left Ventricular Mass Over Time

Univariable Analysis Multivariable Analysis

Change in Left Ventricular 
Mass Index, β (95% CI), g/

m2 per Year P Value

Change in Left Ventricular 
Mass Index, β (95% CI), g/

m2 per Year P Value

Natural history group: factors influencing left ventricular mass progression

        Age, y 0.03 (−0.05 to 0.10) 0.50 0.05 (−0.04 to 0.13) 0.30

        Men 0.66 (−1.33 to 2.64) 0.51 0.95 (−1.16 to 3.05) 0.37

        Hypertension −1.38 (−3.25 to 0.49) 0.14 −1.75 (−3.95 to 0.44) 0.12

        Valvuloarterial impedance −0.24 (−1.49 to 1.01) 0.70 −0.08 (−1.35 to 1.20) 0.91

        Baseline peak aortic-jet velocity, m/s 1.44 (0.26 to 2.63) 0.02 0.67 (−0.73 to 2.07) 0.34

        Annualized peak aortic-jet velocity change, 
m/s per year

7.10 (2.90 to 11.30) 0.001 4.98 (0.53 to 9.91) 0.048

        Presence midwall late gadolinium 
enhancement

0.45 (−1.67 to 2.56) 0.68 −0.17 (−2.28 to 1.95) 0.88

AVR group: factors influencing left ventricular mass regression

        Age, y 0.45 (0.01 to 0.90) 0.047 −0.11 (−0.46 to 0.24) 0.53

        Men −3.0 (−12.1 to 6.1) 0.50 5.23 (−1.10 to 11.55) 0.10

        Hypertension 10.4 (3.9 to 16.8) 0.002 5.52 (0.29 to 10.75) 0.04

        Valvuloarterial impedance 1.9 (−1.4 to 5.2) 0.26 −0.69 (−3.18 to 1.79) 0.57

        Pre-AVR left ventricular mass index, g/m2 −0.37 (−0.49 to −0.25) <0.001 −0.39 (−0.53 to −0.26) <0.001

        Peak aortic-jet velocity at 1 y post-AVR, m/s 2.2 (−4.3 to 8.8) 0.49 4.33 (−0.27 to 8.93) 0.06

        Presence midwall late gadolinium 
enhancement

−9.3 (−17.5 to −1.1) 0.027 −4.7 (−10.5 to 1.12) 0.11

AVR indicates aortic valve replacement; and CI, confidence interval.
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per year]; P<0.001; Table 2; Figure 1). In contrast, the 
ECV% increased (1.2% /y [0.4%–2.2% /y]; P=0.003; 
Figure 1) consistent with faster regression of LVM than 
diffuse fibrosis. The type of replacement valve implant-
ed did not influence the degree of LVM (P=0.61) or 
iECV (P=0.97) regression.

On visual assessment, midwall LGE was present in 
10 patients (26%) at baseline. No patient went on to 
develop new areas of LGE on repeat imaging nor did 
any patient with existing LGE demonstrate resolution 
of any established areas post-AVR (Figure 3). Quantita-
tively, there was no significant change in LGE mass after 
AVR (P=0.22; Table 2) even in patients rescanned after 
2 years. Infarct pattern LGE was observed at baseline 
in 5 patients (13%). One new infarct was detected on 
repeat imaging, but overall no change was observed in 
LGE mass in these patients (P=0.72).

Sensitivity analysis was performed in patients who 
underwent repeat imaging at the same time interval (2 
years in the natural history cohort, n=50; 1 year in the 
AVR cohort, n=27). Our findings were unchanged from 
those made across the cohort as a whole (Figure I and 
Table I in the Data Supplement).

DISCUSSION
This is the first study to characterize how LVH and fibro-
sis progress in AS and how these processes then reverse 
remodel after AVR. Using a multicenter multimodality 
imaging approach with serial echocardiography and 
MRI, we have demonstrated that both hypertrophy and 
fibrosis progress in an increasingly rapid manner as AS 
severity advances. Once midwall patterns of replace-
ment fibrosis (LGE) have become established, further 
scarring seems to accumulate rapidly. Although LVH 
and diffuse fibrosis reverse after AVR, midwall LGE does 
not and seems to be irreversible. Given the adverse 
prognosis associated with midwall fibrosis burden, our 
data suggest prompt AVR at the first sign of midwall 
LGE or just before its development might improve long-
term patient outcomes.

In the natural history cohort, we observed a slow and 
steady progression in each of the echocardiographic 
measures of valvular stenosis as anticipated.15 This 
valve progression was strongly influenced by baseline 
AS severity, with the slowest progression in patients 
with mild stenosis and the most rapid progression in 

Figure 2. Serial magnetic resonance images in a patient with severe aortic stenosis and progression of replacement fibrosis. Top row, Midwall late gadolinium 
enhancement (LGE) is present baseline magnetic resonance imaging (MRI; white arrow, baseline image). New areas of LGE can be seen on follow-up MRI after 1 
y (red arrows). The patient subsequently developed exertional breathlessness and underwent aortic valve replacement (AVR). Repeat imaging 1 y after AVR dem-
onstrated no change in the pattern or volume of LGE. In patients with established midwall LGE, rapid accumulation of further LGE was observed with the fastest 
progression in those with the most severe aortic stenosis (A), the highest baseline burden of LGE (B), and the most advanced indexed extracellular volume (iECV; 
C). After AVR, there was no change in LGE burden (A). NS indicates no significant annualized change in AVR group compared with baseline values. by guest on June 21, 2018
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those with severe obstruction. This was mirrored by a 
similar pattern of increasing LVM progression. Indeed, 
a moderate correlation was observed between valve 
stenosis progression and LVM progression, with the 
annualized increase in peak aortic-jet velocity, the only 
independent predictor of LVM progression on multi-
variable analysis. Consistent with this, AVR resulted in 
a substantial reduction in aortic valve obstruction that 
was accompanied by a ≈20% reduction in the LVM. 
Again, there was a strong correlation between the 
reduction in transvalvular gradient and LVM regression, 
with the former emerging as an independent predictor 
of reverse remodeling on multivariable analysis. One 
surprising finding was a small but significant reduction 
in stroke volume after AVR. This may relate to accom-
panying reductions in LV end-diastolic volume but 
requires further study.

What about myocardial fibrosis? MRI is the only 
noninvasive imaging technique capable of assessing 
both diffuse interstitial (T1 mapping techniques) and 
replacement fibrosis (LGE). T1 mapping provides mul-
tiple different measurements that demonstrate close 
agreement with collagen volume fraction on histology 
and therefore act as surrogates of interstitial myocardial 
fibrosis.7,16 We here investigated the ECV% and iECV 
because of the advantages these measures hold when 
comparing values acquired in a multicenter setting 
on different scanners and at different field strengths. 
Although ECV% gives an indication of the proportion 
of the myocardium made up of fibrosis, iECV is a sur-
rogate of the total fibrosis burden in the LV. Togeth-
er these 2 measures can provide unique insights into 
how the extracellular and intracellular compartments 

of the myocardium change in AS and in response to 
AVR. Like peak aortic-jet velocity and LVMi, the iECV 
increased with time suggesting progressive expansion 
of the extracellular compartment and diffuse interstitial 
fibrosis. Once again, this progression appeared to occur 
quickest in those with the most advanced valvular ste-
nosis. By comparison, ECV% did not demonstrate any 
evidence of progression, suggesting balanced increases 
in the size of the cellular and extracellular compart-
ments as LV remodeling advances.

After AVR, reductions in iECV were observed similar 
to those observed in peak aortic-jet velocity and LVM, 
confirming that diffuse interstitial fibrosis is indeed 
reversible. However, the accompanying rise in ECV% 
suggests that regression in cellular hypertrophy occurs 
faster and to a greater degree than this reduction in 
diffuse fibrosis. These novel imaging findings are in 
keeping with historical data from myocardial biopsies 
performed after AVR showing an initial increase of per-
centage interstitial fibrosis on histology at 18 months.17

Midwall LGE represents a more advanced stage of 
focal replacement fibrosis18 in the myocardium and 
has been described in numerous AS populations.4,6,19 
Midwall LGE is a marker of LV decompensation dem-
onstrating a close association with myocardial injury, 
LV diastolic function, LV systolic function, and exercise 
capacity.7 Moreover, multiple different studies from 
multiple centers have confirmed midwall LGE as a pow-
erful prognostic marker of long-term all-cause and car-
diovascular mortality.4–7 Most of these adverse events 
occur after AVR,20 and there seems to be a proportion-
ate relationship: the more myocardial LGE, the worse 
the clinical outcomes.4,5

Figure 3. Changes in left ventricular mass (LVM), diffuse fibrosis, and replacement fibrosis in aortic stenosis before and after valve replacement. Longitudinal 
changes in LVM index (LVMi), diffuse fibrosis (indexed extracellular volume [iECV]), and replacement fibrosis (late gadolinium enhancement [LGE]) before and after 
valve replacement (AVR) are illustrated with 2 example patients (A and B). All 3 measures increase exponentially as stenosis severity increases (patient A, natural 
history cohort), and new areas of LGE are seen on follow-up imaging (red arrows). However, after AVR, cellular hypertrophy regresses more quickly than diffuse 
fibrosis, and replacement fibrosis seems unchanged (patient B, white arrows). AVR indicates aortic valve replacement; and Vmax, peak aortic-jet velocity.
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For the first time, we have demonstrated that the 
burden of midwall LGE increases while asymptomat-
ic patients are being monitored in the clinic. Indeed, 
once midwall LGE has become established, then fur-
ther accumulation of such scarring is relatively rapid, 
increasing on average by 75% each year especially in 
patients with a high baseline fibrosis burden. Impor-
tantly, we go on to demonstrate that although this 
progressive scarring is arrested by AVR, it does not 
reverse even out to 2 years after AVR. This is consis-
tent with smaller short-term studies and implies that 
the scar that patients develop while waiting for surgery 
remains with them for the rest of their life, contribut-
ing to their poorer long-term prognosis. These findings 
could have important clinical implications for optimiz-
ing patient care and the timing of AVR. For example, 
based on our data, prompt AVR could be undertaken 
when midwall LGE is first identified to prevent the 
accumulation of further scarring and to improve long-
term patient outcomes. This strategy requires prospec-
tive confirmation and is currently being tested in the 
EVOLVED (Early Valve Replacement guided by Biomark-
ers of Left Ventricular Decompensation in Asymptom-
atic Patients with Severe Aortic Stenosis) randomized 
controlled trial (NCT03094143).

Our study does have some limitations. Given the 
heterogeneity in the timing of follow-up imaging, we 
used annualized change for our primary analysis. This 
assumes linear progression or regression of variables 
which may not be the case. In the sensitivity analysis, 
we repeated our analysis of the data using absolute 
change in the subgroup of patients who underwent 
repeat imaging after the same time interval (2 years 
in the natural history cohort [n=50] and 1 year in the 
AVR cohort [n=27]). Our results were consistent with 
the annualized analysis. Further studies are still required 
to investigate how LV remodeling and reverse remod-
eling progress over multiple time points in individual 
patients. The ECV measurements (ECV%, iECV) reflect 
the size of the extracellular compartment and therefore 
potentially represent multiple different factors, includ-
ing the intravascular space and myocardial infiltration. 
However, in patients with AS (and in the absence of 
associated cardiac amyloidosis), there is a close associa-
tion between these ECV measurements and histological 
markers of interstitial fibrosis, confirming that they pro-
vide a useful surrogate measure of interstitial fibrosis, 
as here presented.

CONCLUSIONS
We have used echocardiography and MRI to character-
ize the structural changes in the myocardium that occur 
in patients with AS both during routine surveillance 
and after AVR. In patients with AS, cellular hypertrophy 
and diffuse interstitial fibrosis increase in a balanced 

and exponential manner before reversing at different 
rates after AVR. Once established, midwall replacement 
fibrosis accumulates rapidly but seems irreversible after 
AVR. The myocardial scar burden that patients develop 
while waiting for surgery, therefore, persists into the 
long term along with prognostic implications that this 
entails. Prompt valve replacement as soon as midwall 
fibrosis develops holds promise in improving clinical 
outcomes in patients with AS.
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Methods 
 
 
 
Echocardiography 

A comprehensive transthoracic echocardiographic assessment was performed in all patients 

(Edinburgh: iE33, Philips Medical Systems, The Netherlands. Quebec: iE33 or EPIQ, Philips Healthcare, 

Ontario, Canada) by dedicated research ultrasonographers. Careful attention was given in the 

assessment of aortic stenosis severity.  The left ventricular (LV) outflow tract diameter was measured 

in the parasternal long-axis view, at the insertion of the aortic cusps from the inner edge of the septal 

endocardium to the inner edge of the anterior mitral leaflet in mid-systole.  Left ventricular outflow 

tract velocity-time integral was measured in the apical 5-chamber view using pulsed-wave Doppler 

just proximal to the aortic valve, with care taken to obtain a laminar spectral tracing.  The peak aortic 

jet velocity and mean transvalvular gradient were derived from the aortic valve velocity-time integral, 

using continuous-wave Doppler. The highest aortic jet velocity and mean transvalvular gradient were 

determined in multiple acoustic windows using both standard S51 and D2cwc probes (Philips Medical 

Systems, Best, the Netherlands). The mean of 3 readings (5 if the patient had atrial fibrillation) was 

recorded.  Aortic valve area was calculated using the continuity equation.  The severity of aortic 

stenosis was assessed and classified according to the European Association of 

Echocardiography/American Society of Echocardiography guidelines.1  

 

Trans-mitral early (E) and late diastolic velocities, as well as, deceleration time of early filling velocity 

were measured at the tips of the mitral valve leaflets using pulsed-wave Doppler.  The mean early 

diastolic velocities of the medial and lateral mitral annulus (e’) were measured using pulsed-wave 

tissue Doppler imaging. Diastolic function was assessed as recommended in recent guidelines.2 
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Magnetic resonance imaging 

Magnetic resonance imaging was performed using both 1.5 and 3T scanners (Edinburgh: MAGNETOM 

Verio, Siemens AG, Erlangen, Germany; Quebec: ACHIEVA and INGENIA, Philips Healthcare, Best, the 

Netherlands or, Erlangen, Germany). Repeat imaging was performed using the same standardized 

protocols at each site. Short-axis cine images extending from the mitral valve to the left ventricular 

apex were obtained using a balanced steady-state free precession sequence (Edinburgh: 8-mm 

parallel slices with 2-mm spacing; temporal resolution 45ms. Quebec: 8 mm parallel slices with no 

gap). Typical parameters at 1.5T were FOV 380 mm, TR/TE 3.2/1.6 ms, flip angle 60º and NEX of 1, in-

plane spatial resolution of 1.6 x 2 mm. Equivalent acquisition parameters at 3T were FOV 380 mm, 

TR/TE 2.8/1.3 ms, flip angle 45º, and NEX of 1, in-plane spatial resolution of 1.7 mm x 2 mm, 7-mm 

slice thickness, 0-mm gap.  

 

Focal replacement and diffuse interstitial myocardial fibrosis was assessed in all patients using late 

gadolinium enhancement (LGE) and myocardial T1 mapping, respectively.  Late gadolinium 

enhancement was performed 15 min following gadobutrol (Gadovist, Bayer Pharma AG, Germany, 0.1 

mmol/kg [Edinburgh], 0.2 mmol/kg [Quebec]) using an inversion-recovery fast gradient-echo 

sequence performed in two phase-encoding directions to differentiate true late enhancement from 

artefact. The LGE imaging parameters at 1.5T were FOV 350 mm, TR/TE 4.5/1.3 ms, flip angle 15 º, 8-

mm slice thickness, in-plane resolution of 1.9 mm x 3.1 mm with an inversion time of 200 to 300 ms 

adjusted to null normal myocardium following gadolinium contrast administration. Equivalent 

acquisition parameters at 3T were FOV 350 mm, TR/TE 6.1/3 ms, flip angle 25 º, 8 mm slice thickness, 

in-plane resolution of 1.6 mm x 2 mm. The inversion time was optimized to achieve satisfactory nulling 

of the myocardium.  

 

Diffuse myocardial fibrosis was assessed using Modified Look-Locker Inversion-recovery with built-in 

motion correction. A heart beat acquisition scheme of 3(3)-3(3)-5 was used in Edinburgh (flip angle 
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35; minimum TI 100 ms; TI increment of 80 ms; time delay of 150 ms)3,4,5 whilst an acquisition scheme 

of 5(3)-3 was used in Quebec (with a post-contrast acquisition scheme of 4(1)3(1)2 used in patients 

scanned at 3T).6 A gradient echo field map and associated shim were performed to minimize off-

frequency artefact.   

 

Image analysis 

Ventricular volumes, mass and function were quantified using dedicated software (CVI42 (Circle 

Cardiovascular Imaging Inc., Calgary, Canada) by a single reporter (RJE) blinded to the scan time-point.  

Basal ventricular slices were included if >50% of the LV blood pool was surrounded by myocardium. 

Papillary muscles and minor trabeculations were included in the left ventricular mass measurements 

and excluded from the intracavity volume measurements as per Society for Cardiovascular Magnetic 

Resonance guidelines.7  

 

The left ventricular wall thickness was measured in each of the 16 myocardial segments (excluding the 

LV apex) and the maximum value recorded. Left ventricular longitudinal function was determined by 

measuring the difference in the distance between the mitral valve plane and the epicardial left 

ventricular apex in end-systole and end-diastole. The final value was calculated as the mean value of 

the recorded measurements in both 4-chamber and 2-chamber views. Left atrial volume was 

calculated using the bi-plane area-length method by tracing the endocardial LA contour in end-

ventricular systole in both 2 and 4 chamber long-axis views. 

 

The presence of mid-wall myocardial fibrosis was determined qualitatively by two independent and 

experienced operators (MRD and RJE).  The distribution of mid-wall fibrosis was described according 

to the standard 17-segment model recommended by the American College of Cardiology/American 

Heart Association.8 LGE was quantified in a semi-automated manner using a signal intensity threshold 

of >3 standard deviations above the mean value in a region of normal myocardium.9 Areas of inversion 
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artefact, infarct pattern LGE or signal contamination by epicardial fat or blood pool were manually 

excluded. Sub-endocardial LGE was also identified and quantified using the same analysis technique. 

 

T1 mapping analysis was performed using CVI42 (Circle Cardiovascular Imaging Inc., Calgary, Canada). 

Endocardial and epicardial contours were manually contoured on the native motion-corrected 

myocardial T1 maps with manual offsetting of the contours to avoid partial volume effects. The right 

ventricular insertion points were identified leading to automatic segmentation of the basal and mid-

ventricular slices. No analysis was performed on the apical myocardial segments as these are most 

susceptible to partial volume effects. These contours were subsequently copied onto corresponding 

20-minute post-contrast maps with minor adjustments made to avoid partial volume effects and 

artifact. Segments demonstrating mid-wall late enhancement were included in the overall T1 analysis 

whereas those containing infarct pattern LGE were excluded as per recent post-processing 

guidelines.10 The extracellular volume fraction (ECV%) was calculated according to: ECV% = partition 

coefficient x [1-haematocrit], where partition coefficient = [∆R1myocardium/∆R1blood-pool] and ∆R1 = 

(1/post-contrast T1-1/pre-contrast T1). This was calculated based on the average of the values 

obtained from the basal and mid ventricular segments. Hematocrit was sampled at the time of 

cardiovascular magnetic resonance imaging.  The indexed extracellular volume (iECV) in each patient 

was derived using the following: ECV% x left ventricular end-diastolic myocardial volume indexed to 

body surface area (using the Dubois formula), where left ventricular myocardial volume = left 

ventricular mass /1.05 g/mL.11,12 
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Supplemental Table 1: Baseline and Absolute Change in Markers of Left Ventricular Remodeling at 
2 Years in the Natural History Group and 1 Year in the AVR Group.  
 

 NATURAL HISTORY GROUP 
N = 50 

AVR GROUP 
N=27 

LV assessment 
Baseline 
values 

2-year 
absolute 
change 

P value 
Baseline 
values 

1-year 
absolute 
change 

P value 

Indexed left ventricular-end 
diastolic volume, mL/m2 

69±11 -2 [-8, 5] 0.058 68±16 -4 [-18, 6] 0.047 

Indexed left ventricular-end 
systolic volume, mL/m2 

15 [13, 22] -2 [-5, 3] 0.07 19 [13, 25] -3 [-8, 4] 0.22 

Indexed stroke volume, mL/m2 52±9 -1 [-6, 4] 0.47 48±9 -3 [-14, 4] 0.08 

Ejection fraction, % 75±9 0 [-4, 8] 0.15 73±9 1 [-5, 7] 0.77 

Left ventricular mass index, g/m2 72±17 5 [2, 12] <0.0001 97±23 
-18 [-26, -

7] 
<0.0001 

Maximum left ventricular wall 
thickness, mm 

12±3 1 [0, 2] <0.0001 15±3 -2 [-4, -2] <0.0001 

Mass/volume 1.06±0.28 
0.15 [0.02, 

0.29] 
<0.0001 1.50±0.35 

-0.17 [-
0.34, -0.07] 

0.02 

Longitudinal systolic function, mm 14±3 -1 [-3, 0.5] 0.0005 11±3 3 [-1, 5] 0.003 

Indexed left atrial volume, mL/m2 37±11 -1 [-7, 5] 0.79 36±11 -12 [-26, 0] 0.08 

Infarct late gadolinium 
enhancement, n (%) 

4 (8) 4 (8) - 3 (11) 4 (15) - 

Infarct late gadolinium 
enhancement mass, g 

8.2±4.9 0.6 [-1.8, 1.4] 0.94 4.8±2.8 0 [-0.8, 1.7] 0.72 

Mid-wall late gadolinium 
enhancement, n (%) 

10 (20) 10 (20) - 10 (37) 10 (37) - 

Mid-wall late gadolinium 
enhancement mass, g 

1.2 [0.5, 
4.5] 

2.6 [0.7, 6.0] 0.002 
3.6 [2.6, 

9.6] 
-1 [-1.4, 0] 0.14 

T1 mapping measures       

Extracellular volume fraction, % 26.6±3.4 0.1 [-1.0, 1.5] 0.89 26.9±2.5 
1.4 [0.8, 

4.0] 
<0.0001 

Total extracellular volume, mL 38±11  2 [4, 1] 0.001 50±20 -4 [-12, -1] <0.0001 

Indexed extracellular volume, 
mL/m2  

20±5 1 [0, 4] 0.001 27±9 -2 [-7, -1] <0.0001 

Echocardiography       

Peak aortic-jet velocity, m/s 3.13±0.73 
0.25 [-0.05, 

0.51] 
<0.0001 4.73±0.91 

-2.15 [-
2.78, -1.60] 

<0.0001 

Mean aortic valve gradient, 
mmHg 

23±12 4 [1, 9] <0.0001 54±25 
-32 [-48, -

26] 
<0.0001 

Aortic valve area, cm2 1.12±0.31 
-0.09 [-0.16, -

0.02] 
<0.0001 0.79±0.22 

0.70 [0.49, 
1.06] 

<0.0001 

Indexed stroke volume, mL/m2 42±7 -1 [-3, 3] 0.73 47±10 -2 [-8, 3] 0.028 
Mean systolic blood pressure, 
mmHg 

138±20 -3 [-12, 5] 0.06 143±21 -4 [-17, 12] 0.15 

Valvuloarterial impedance (Zva), 
mmHg/mL/m2 

3.99±0.97 
0.02 [-0.28, 

0.44] 
0.26 4.33±1.14 

-0.56 [-
1.39, -0.05] 

0.0004 

Mean e’, cm/s 7.58±2.07 
-0.10 [-1.17, 

0.96] 
0.33 6.05±2.01 

1.38 [-0.12, 
3.37] 

0.003 

E/e’ ratio 
10.9 [8.7, 

11.9] 
1.2 [-0.8, 2.5] 0.019 

12.9 [10.1, 
18.0] 

-1 [-5, 3] 0.56 
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Supplemental Figure 1: Absolute Changes in Aortic Valve Obstruction, Left Ventricular Hypertrophy 
and Diffuse Fibrosis in the Natural History and AVR Groups.   
Absolute change in measures was assessed at the time-point with the majority of patient follow-up in 
the Natural History (2 years, N=50) and the AVR (1 year, N=27) groups. As in the annualised change 
analysis, there is an increase in rate of progression of aortic-jet velocity, LVMi and iECV with increasing 
AS severity in the Natural History group. However ECV fraction does not change at 2 years. Following 
AVR, there is regression of both LVMi and iECV, and again consistent with the annualised change 
analysis, we see an increase in ECV fraction, suggesting that cellular hypertrophy regresses more 
quickly than diffuse fibrosis. 
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