122 research outputs found

    Population genetic structure in coral reef fish: Spatial and temporal genetic patterns of the bicolor damselfish (Stegastes partitus)

    Get PDF
    Dispersal in marine systems is of great importance within the context of ecology, evolution and conservation. Yet, in coral reef fish with pelagic larvae, little is known about their levels of connectivity, as it is very difficult to directly track these organisms through their deep-water dispersive stage. The dispersal of juvenile bicolor damselfish (Stegastes partitus ), sampled from 16 sites on the Meso-American Barrier Reef System (MBRS), was inferred from allele frequency data based on six microsatellite DNA markers at three spatial scales: small (\u3c20 \u3ekm), medium (20 to 40 km), and large (100 to 300 km). Juvenile bicolor damselfish within the MBRS were found to possess genetic homogeneity at large geographic scales, with cryptic genetic structure detected at small and medium scales, most likely due to micro-geographic effects. The stability of the genetic structure in 12 of these sites was examined over annual and seasonal scales using the same suite of genetic markers. The genetic structure of these populations was found to be variable over both time-scales examined. From these results, it can be inferred that dispersal patterns of the bicolor damselfish are more stochastic than directed, and that temporally unstable genetic patchiness is present in newly recruited bicolor damselfish over the MBRS, possibly due to high reproductive variance. These findings are of importance for future research, as well as conservation and management strategies addressing connectivity in coral reef fish.Dept. of Biological Sciences. Paper copy at Leddy Library: Theses & Major Papers - Basement, West Bldg. / Call Number: Thesis2004 .H47. Source: Masters Abstracts International, Volume: 43-05, page: 1664. Adviser: Daniel D. Heath. Thesis (M.Sc.)--University of Windsor (Canada), 2004

    Development and Implementation of Nationally Recognized Laboratory for Material Characterization in the Microwave and Millimeter Wave Bands

    Get PDF
    This report provides a progress update for establishing a laboratory for material characterization in the microwave and millimeter wave bands. During the launch of STS-124 a large area of refractory bricks was liberated from the flame trench built for the exhaust of the solid rocket motors (SRM). The inspection of the liberated area revealed many defects, debonds, corrosion and voids that are a cause for concern relating to the health of the entire flame trench wall. A request for assistance was received for the nondestructive evaluation (NDE) of these anomalies behind the refractory bricks, with the primary interest being a health assessment based on the quality of the brick, epoxy and concrete bond

    Macroalgal responses to ocean acidification depend on nutrient and light levels

    Get PDF
    Ocean acidification may benefit algae that are able to capitalize on increased carbon availability for photosynthesis, but it is expected to have adverse effects on calcified algae through dissolution. Shifts in dominance between primary producers will have knock-on effects on marine ecosystems and will likely vary regionally, depending on factors such as irradiance (light vs. shade) and nutrient levels (oligotrophic vs. eutrophic). Thus experiments are needed to evaluate interactive effects of combined stressors in the field. In this study, we investigated the physiological responses of macroalgae near a CO2 seep in oligotrophic waters off Vulcano (Italy). The algae were incubated in situ at 0.2 m depth using a combination of three mean CO2 levels (500, 700-800 and 1200 μatm CO2), two light levels (100 and 70% of surface irradiance) and two nutrient levels of N, P, and K (enriched vs. non-enriched treatments) in the non-calcified macroalga Cystoseira compressa (Phaeophyceae, Fucales) and calcified Padina pavonica (Phaeophyceae, Dictyotales). A suite of biochemical assays and in vivo chlorophyll a fluorescence parameters showed that elevated CO2 levels benefitted both of these algae, although their responses varied depending on light and nutrient availability. In C. compressa, elevated CO2 treatments resulted in higher carbon content and antioxidant activity in shaded conditions both with and without nutrient enrichment-they had more Chla, phenols and fucoxanthin with nutrient enrichment and higher quantum yield (Fv/Fm) and photosynthetic efficiency (αETR) without nutrient enrichment. In P. pavonica, elevated CO2 treatments had higher carbon content, Fv/Fm, αETR, and Chla regardless of nutrient levels-they had higher concentrations of phenolic compounds in nutrient enriched, fully-lit conditions and more antioxidants in shaded, nutrient enriched conditions. Nitrogen content increased significantly in fertilized treatments, confirming that these algae were nutrient limited in this oligotrophic part of the Mediterranean. Our findings strengthen evidence that brown algae can be expected to proliferate as the oceans acidify where physicochemical conditions, such as nutrient levels and light, permit

    Responses of marine benthic microalgae to elevated CO<inf>2</inf>

    Get PDF
    Increasing anthropogenic CO2 emissions to the atmosphere are causing a rise in pCO2 concentrations in the ocean surface and lowering pH. To predict the effects of these changes, we need to improve our understanding of the responses of marine primary producers since these drive biogeochemical cycles and profoundly affect the structure and function of benthic habitats. The effects of increasing CO2 levels on the colonisation of artificial substrata by microalgal assemblages (periphyton) were examined across a CO2 gradient off the volcanic island of Vulcano (NE Sicily). We show that periphyton communities altered significantly as CO2 concentrations increased. CO2 enrichment caused significant increases in chlorophyll a concentrations and in diatom abundance although we did not detect any changes in cyanobacteria. SEM analysis revealed major shifts in diatom assemblage composition as CO2 levels increased. The responses of benthic microalgae to rising anthropogenic CO2 emissions are likely to have significant ecological ramifications for coastal systems. © 2011 Springer-Verlag

    Stability of Strong Species Interactions Resist the Synergistic Effects of Local and Global Pollution in Kelp Forests

    Get PDF
    Foundation species, such as kelp, exert disproportionately strong community effects and persist, in part, by dominating taxa that inhibit their regeneration. Human activities which benefit their competitors, however, may reduce stability of communities, increasing the probability of phase-shifts. We tested whether a foundation species (kelp) would continue to inhibit a key competitor (turf-forming algae) under moderately increased local (nutrient) and near-future forecasted global pollution (CO2). Our results reveal that in the absence of kelp, local and global pollutants combined to cause the greatest cover and mass of turfs, a synergistic response whereby turfs increased more than would be predicted by adding the independent effects of treatments (kelp absence, elevated nutrients, forecasted CO2). The positive effects of nutrient and CO2 enrichment on turfs were, however, inhibited by the presence of kelp, indicating the competitive effect of kelp was stronger than synergistic effects of moderate enrichment of local and global pollutants. Quantification of physicochemical parameters within experimental mesocosms suggests turf inhibition was likely due to an effect of kelp on physical (i.e. shading) rather than chemical conditions. Such results indicate that while forecasted climates may increase the probability of phase-shifts, maintenance of intact populations of foundation species could enable the continued strength of interactions and persistence of communities

    Divergent Responses in Growth and Nutritional Quality of Coastal Macroalgae to the Combination of Increased pCO\u3csub\u3e2\u3c/sub\u3e and Nutrients

    Get PDF
    Coastal ecosystems are subjected to global and local environmental stressors, including increased atmospheric carbon dioxide (CO2) (and subsequent ocean acidification) and nutrient loading. Here, we tested how two common macroalgal species in the Northwest Atlantic (Ulva spp. and Fucus vesiculosus Linneaus) respond to the combination of increased CO2 and nutrient loading. We utilized two levels of pCO2 with two levels of nutrients in a full factorial design, testing the growth rates and tissue quality of Ulva and Fucus grown for 21 days in monoculture and biculture. We found that the opportunistic, fast-growing Ulva exhibited increased growth rates under high pCO2 and high nutrients, with growth rates increasing three-fold above Ulva grown in ambient pCO2 and ambient nutrients. By contrast, Fucus growth rates were not impacted by either environmental factor. Both species exhibited a decline in carbon to nitrogen ratios (C:N) with elevated nutrients, but pCO2 concentration did not alter tissue quality in either species. Species grown in biculture exhibited similar growth rates to those in monoculture conditions, but Fucus C:N increased significantly when grown with Ulva, indicating an effect of the presence of Ulva on Fucus. Our results suggest that the combination of ocean acidification and nutrients will enhance abundance of opportunistic algal species in coastal systems and will likely drive macroalgal community shifts, based on species-specific responses to future conditions
    corecore