71 research outputs found
NEMO: A Project for a km Underwater Detector for Astrophysical Neutrinos in the Mediterranean Sea
The status of the project is described: the activity on long term
characterization of water optical and oceanographic parameters at the Capo
Passero site candidate for the Mediterranean km neutrino telescope; the
feasibility study; the physics performances and underwater technology for the
km; the activity on NEMO Phase 1, a technological demonstrator that has
been deployed at 2000 m depth 25 km offshore Catania; the realization of an
underwater infrastructure at 3500 m depth at the candidate site (NEMO Phase 2).Comment: Proceeding of ISCRA 2006, Erice 20-27 June 200
Measurement of the atmospheric muon flux with the NEMO Phase-1 detector
The NEMO Collaboration installed and operated an underwater detector
including prototypes of the critical elements of a possible underwater km3
neutrino telescope: a four-floor tower (called Mini-Tower) and a Junction Box.
The detector was developed to test some of the main systems of the km3
detector, including the data transmission, the power distribution, the timing
calibration and the acoustic positioning systems as well as to verify the
capabilities of a single tridimensional detection structure to reconstruct muon
tracks. We present results of the analysis of the data collected with the NEMO
Mini-Tower. The position of photomultiplier tubes (PMTs) is determined through
the acoustic position system. Signals detected with PMTs are used to
reconstruct the tracks of atmospheric muons. The angular distribution of
atmospheric muons was measured and results compared with Monte Carlo
simulations.Comment: Astrop. Phys., accepte
Performance of the First ANTARES Detector Line
In this paper we report on the data recorded with the first Antares detector
line. The line was deployed on the 14th of February 2006 and was connected to
the readout two weeks later. Environmental data for one and a half years of
running are shown. Measurements of atmospheric muons from data taken from
selected runs during the first six months of operation are presented.
Performance figures in terms of time residuals and angular resolution are
given. Finally the angular distribution of atmospheric muons is presented and
from this the depth profile of the muon intensity is derived.Comment: 14 pages, 9 figure
The ANTARES Optical Beacon System
ANTARES is a neutrino telescope being deployed in the Mediterranean Sea. It
consists of a three dimensional array of photomultiplier tubes that can detect
the Cherenkov light induced by charged particles produced in the interactions
of neutrinos with the surrounding medium. High angular resolution can be
achieved, in particular when a muon is produced, provided that the Cherenkov
photons are detected with sufficient timing precision. Considerations of the
intrinsic time uncertainties stemming from the transit time spread in the
photomultiplier tubes and the mechanism of transmission of light in sea water
lead to the conclusion that a relative time accuracy of the order of 0.5 ns is
desirable. Accordingly, different time calibration systems have been developed
for the ANTARES telescope. In this article, a system based on Optical Beacons,
a set of external and well-controlled pulsed light sources located throughout
the detector, is described. This calibration system takes into account the
optical properties of sea water, which is used as the detection volume of the
ANTARES telescope. The design, tests, construction and first results of the two
types of beacons, LED and laser-based, are presented.Comment: 21 pages, 18 figures, submitted to Nucl. Instr. and Meth. Phys. Res.
TEM-EELS study of low-friction superlattice TiAlN/VN coating: the wear mechanisms
A 20-50 nm thick tribofilm was generated on the worn surface of a multilayer coating TiAlN/VN after dry sliding test against an alumina counterpart. The tribofilm was characterized by applying analytical transmission electron microscopy techniques with emphasis on detailed electron energy loss spectrometry and energy loss near edge structure analysis. Pronounced oxygen in the tribofilm indicated a predominant tribo-oxidation wear. Structural changes in the inner-shell ionization edges of N, Ti and V suggested decomposition of nitride fragments
Status of NEMO
The activities towards the realization of a km3 Cherenkov neutrino detector carried out by the NEMO Collaboration are described. Long-term exploration of a 3500 m deep-sea site close to the Sicilian coast has shown that it is optimal for the installation of the detector. The realization of a Phase-1 project, which is under way, will validate the proposed technologies for the realization of the km3 detector on a Test Site at 2000 m depth. The realization of a new infrastructure on the candidate site (Phase-2 project) will provide the possibility to test detector components at 3500 m depth
Sensitivity of an underwater Cerenkov km3 telescope to TeV neutrinos from Galactic Microquasars
In this paper are presented the results of Monte Carlo simulations on the
capability of the proposed NEMO-km telescope to detect TeV muon neutrinos
from Galactic microquasars. For each known microquasar we compute the number of
detectable events, together with the atmospheric neutrino and muon background
events. We also discuss the detector sensitivity to neutrino fluxes expected
from known microquasars, optimizing the event selection also to reject the
background; the number of events surviving the event selection are given. The
best candidates are the steady microquasars SS433 and GX339-4 for which we
estimate a sensitivity of about erg/cm s; the predicted
fluxes are expected to be well above this sensitivity. For bursting
microquasars the most interesting candidates are Cygnus X-3, GRO J1655-40 and
XTE J1118+480: their analyses are more complicated because of the stochastic
nature of the bursts.Comment: 20 pages, 3 figures, accepted by Astroparticle Physic
- …