120 research outputs found

    Making sense of joint commissioning: three discourses of prevention, empowerment and efficiency

    Get PDF
    Background: In recent years joint commissioning has assumed an important place in the policy and practice of English health and social care. Yet, despite much being claimed for this way of working there is a lack of evidence to demonstrate the outcomes of joint commissioning. This paper examines the types of impacts that have been claimed for joint commissioning within the literature. Method: The paper reviews the extant literature concerning joint commissioning employing an interpretive schema to examine the different meanings afforded to this concept. The paper reviews over 100 documents that discuss joint commissioning, adopting an interpretive approach which sought to identify a series of discourses, each of which view the processes and outcomes of joint commissioning differently. Results: This paper finds that although much has been written about joint commissioning there is little evidence to link it to changes in outcomes. Much of the evidence base focuses on the processes of joint commissioning and few studies have systematically studied the outcomes of this way of working. Further, there does not appear to be one single definition of joint commissioning and it is used in a variety of different ways across health and social care. The paper identifies three dominant discourses of joint commissioning – prevention, empowerment and efficiency. Each of these offers a different way of seeing joint commissioning and suggests that it should achieve different aims. Conclusions: There is a lack of clarity not only in terms of what joint commissioning has been demonstrated to achieve but even in terms of what it should achieve. Joint commissioning is far from a clear concept with a number of different potential meanings. Although this ambiguity can be helpful in some ways in the sense that it can bring together disparate groups, for example, if joint commissioning is to be delivered at a local level then more specificity may be required in terms of what they are being asked to deliver

    Intergenerational family caregiving in welfare policy context

    Get PDF
    Definition Intergenerational family caregiving refers to exchanges up and down family lines aimed at nurturing the needs of others. Caregiving is more than a task; it involves emotional and relationship work

    Role of the gap junctions in the contractile response to agonists in pulmonary artery from two rat models of pulmonary hypertension

    Get PDF
    International audienceBackground: Pulmonary hypertension (PH) is characterized by arterial vascular remodelling and alteration in vascular reactivity. Since gap junctions are formed with proteins named connexins (Cx) and contribute to vasoreactivity, we investigated both expression and role of Cx in the pulmonary arterial vasoreactivity in two rat models of PH. Methods: Intrapulmonary arteries (IPA) were isolated from normoxic rats (N), rats exposed to chronic hypoxia (CH) or treated with monocrotaline (MCT). RT-PCR, Western Blot and immunofluorescent labelling were used to study the Cx expression. The role of Cx in arterial reactivity was assessed by using isometric contraction and specific gap junction blockers. Contractile responses were induced by agonists already known to be involved in PH, namely serotonin, endothelin-1 and phenylephrine. Results: Cx 37, 40 and 43 were expressed in all rat models and Cx43 was increased in CH rats. In IPA from N rats only, the contraction to serotonin was decreased after treatment with 37-43Gap27, a specific Cx-mimetic peptide blocker of Cx 37 and 43. The contraction to endothelin-1 was unchanged after incubation with 40Gap27 (a specific blocker of Cx 40) or 37-43Gap27 in N, CH and MCT rats. In contrast, the contraction to phenylephrine was decreased by 40Gap27 or 37-43Gap27 in CH and MCT rats. Moreover, the contractile sensitivity to high potassium solutions was increased in CH rats and this hypersensitivity was reversed following 37-43Gap27 incubation. Conclusion: Altogether, Cx 37, 40 and 43 are differently expressed and involved in the vasoreactivity to various stimuli in IPA from different rat models. These data may help to understand alterations of pulmonary arterial reactivity observed in PH and to improve the development of innovative therapies according to PH aetiology

    Raised tone reveals ATP as a sympathetic neurotransmitter in the porcine mesenteric arterial bed

    Get PDF
    The relative importance of ATP as a functional sympathetic neurotransmitter in blood vessels has been shown to be increased when the level of preexisting vascular tone or pressure is increased, in studies carried out in rat mesenteric arteries. The aim of the present study was to determine whether tone influences the involvement of ATP as a sympathetic cotransmitter with noradrenaline in another species. We used the porcine perfused mesenteric arterial bed and porcine mesenteric large, medium and small arteries mounted for isometric tension recording, because purinergic cotransmission can vary depending on the size of the blood vessel. In the perfused mesenteric bed at basal tone, sympathetic neurogenic vasocontractile responses were abolished by prazosin, an α1- adrenoceptor antagonist, but there was no significant effect of α,β-methylene ATP, a P2X receptor-desensitizing agent. Submaximal precontraction of the mesenteric arterial bed with U46619, a thromboxane A2 mimetic, augmented the sympathetic neurogenic vasocontractile responses; under these conditions, both α,β-methylene ATP and prazosin attenuated the neurogenic responses. In the mesenteric large, medium and small arteries, prazosin attenuated the sympathetic neurogenic contractile responses under conditions of both basal and U46619-raised tone. α,β-Methylene ATP was effective in all of these arteries only under conditions of U46619- induced tone, causing a similar inhibition in all arteries, but had no significant effect on sympathetic neurogenic contractions at basal tone. These data show thatATP is a cotransmitter with noradrenaline in porcine mesenteric arteries; the purinergic component was revealed under conditions of partial precontraction, which is more relevant to physiological conditions

    A comparison of responses to raised extracellular potassium and endothelium-derived hyperpolarizing factor (EDHF) in rat pressurised mesenteric arteries

    Get PDF
    The present study examined the hypothesis that potassium ions act as an endothelium-derived hyperpolarizing factor (EDHF) released in response to ACh in small mesenteric arteries displaying myogenic tone. Small mesenteric arteries isolated from rats were set up in a pressure myograph at either 60 or 90 mmHg. After developing myogenic tone, responses to raising extracellular potassium were compared to those obtained with ACh (in the presence of nitric oxide synthase and cyclo- oxygenase inhibitors). The effects of barium and ouabain, or capsaicin, on responses to raised extracellular potassium or ACh were also determined. The effects of raised extracellular potassium levels and ACh on membrane potential, were measured using sharp microelectrodes in pressurised arteries. Rat small mesenteric arteries developed myogenic tone when pressurised. On the background of vascular tone set by a physiological stimulus (i.e pressure), ACh fully dilated the small arteries in a concentration-dependent manner. This response was relatively insensitive to the combination of barium and ouabain, and insensitive to capsaicin. Raising extracellular potassium produced a more inconsistent and modest vasodilator response in pressurised small mesenteric arteries. Responses to raising extracellular potassium were sensitive to capsaicin, and the combination of barium and ouabain. ACh caused a substantial hyperpolarisation in pressurized arteries, while raising extracellular potassium did not. These data indicate that K+ is not the EDHF released in response to ACh in myogenically active rat mesenteric small arteries. Since the hyperpolarization produced by ACh was sensitive to carbenoxolone, gap junctions are the likely mediator of EDH responses under physiological conditions

    Two novel connexin32 mutations cause early onset X-linked Charcot-Marie-Tooth disease

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>X-linked Charcot-Marie Tooth (CMT) is caused by mutations in the connexin32 gene that encodes a polypeptide which is arranged in hexameric array and form gap junctions.</p> <p>Methods</p> <p>We describe two novel mutations in the connexin32 gene in two Norwegian families.</p> <p>Results</p> <p>Family 1 had a c.225delG (R75fsX83) which causes a frameshift and premature stop codon at position 247. This probably results in a shorter non-functional protein structure. Affected individuals had an early age at onset usually in the first decade. The symptoms were more severe in men than women. All had severe muscle weakness in the legs. Several abortions were observed in this family. Family 2 had a c.536 G>A (C179Y) transition which causes a change of the highly conserved cysteine residue, i.e. disruption of at least one of three disulfide bridges. The mean age at onset was in the first decade. Muscle wasting was severe and correlated with muscle weakness in legs. The men and one woman also had symptom from their hands.</p> <p>The neuropathy is demyelinating and the nerve conduction velocities were in the intermediate range (25–49 m/s). Affected individuals had symmetrical clinical findings, while the neurophysiology revealed minor asymmetrical findings in nerve conduction velocity in 6 of 10 affected individuals.</p> <p>Conclusion</p> <p>The two novel mutations in the connexin32 gene are more severe than the majority of previously described mutations possibly due to the severe structural change of the gap junction they encode.</p

    Diet-Induced Obesity Impairs Endothelium-Derived Hyperpolarization via Altered Potassium Channel Signaling Mechanisms

    Get PDF
    BACKGROUND: The vascular endothelium plays a critical role in the control of blood flow. Altered endothelium-mediated vasodilator and vasoconstrictor mechanisms underlie key aspects of cardiovascular disease, including those in obesity. Whilst the mechanism of nitric oxide (NO)-mediated vasodilation has been extensively studied in obesity, little is known about the impact of obesity on vasodilation to the endothelium-derived hyperpolarization (EDH) mechanism; which predominates in smaller resistance vessels and is characterized in this study. METHODOLOGY/PRINCIPAL FINDINGS: Membrane potential, vessel diameter and luminal pressure were recorded in 4(th) order mesenteric arteries with pressure-induced myogenic tone, in control and diet-induced obese rats. Obesity, reflecting that of human dietary etiology, was induced with a cafeteria-style diet (∼30 kJ, fat) over 16-20 weeks. Age and sexed matched controls received standard chow (∼12 kJ, fat). Channel protein distribution, expression and vessel morphology were determined using immunohistochemistry, Western blotting and ultrastructural techniques. In control and obese rat vessels, acetylcholine-mediated EDH was abolished by small and intermediate conductance calcium-activated potassium channel (SK(Ca)/IK(Ca)) inhibition; with such activity being impaired in obesity. SK(Ca)-IK(Ca) activation with cyclohexyl-[2-(3,5-dimethyl-pyrazol-1-yl)-6-methyl-pyrimidin-4-yl]-amine (CyPPA) and 1-ethyl-2-benzimidazolinone (1-EBIO), respectively, hyperpolarized and relaxed vessels from control and obese rats. IK(Ca)-mediated EDH contribution was increased in obesity, and associated with altered IK(Ca) distribution and elevated expression. In contrast, the SK(Ca)-dependent-EDH component was reduced in obesity. Inward-rectifying potassium channel (K(ir)) and Na(+)/K(+)-ATPase inhibition by barium/ouabain, respectively, attenuated and abolished EDH in arteries from control and obese rats, respectively; reflecting differential K(ir) expression and distribution. Although changes in medial properties occurred, obesity had no effect on myoendothelial gap junction density. CONCLUSION/SIGNIFICANCE: In obese rats, vasodilation to EDH is impaired due to changes in the underlying potassium channel signaling mechanisms. Whilst myoendothelial gap junction density is unchanged in arteries of obese compared to control, increased IK(Ca) and Na(+)/K(+)-ATPase, and decreased K(ir) underlie changes in the EDH mechanism
    • …
    corecore