67 research outputs found

    Constraints on axionlike particles with H.E.S.S. from the irregularity of the PKS 2155-304 energy spectrum

    Get PDF
    Axionlike particles (ALPs) are hypothetical light (sub-eV) bosons predicted in some extensions of the Standard Model of particle physics. In astrophysical environments comprising high-energy gamma rays and turbulent magnetic fields, the existence of ALPs can modify the energy spectrum of the gamma rays for a sufficiently large coupling between ALPs and photons. This modification would take the form of an irregular behavior of the energy spectrum in a limited energy range. Data from the H.E.S.S. observations of the distant BL Lac object PKS 2155-304 (z=0.116) are used to derive upper limits at the 95% C.L. on the strength of the ALP coupling to photons, ggammaa<2.1×10-11GeV-1 for an ALP mass between 15 and 60 neV. The results depend on assumptions on the magnetic field around the source, which are chosen conservatively. The derived constraints apply to both light pseudoscalar and scalar bosons that couple to the electromagnetic fieldFil: Medina, Maria Clementina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico La Plata. Instituto Argentino de Radioastronomia (i); ArgentinaFil: H.E.S. S. collaboration

    Detailed studies of atmospheric calibration in imaging Cherenkov astronomy

    No full text
    ► A ceilometer was used to probe the atmosphere above the TeV instrument H.E.S.S. ► The atmosphere was modelled using MODTRAN and used in cosmic-ray simulations. ► Cosmic-ray simulations were matched to real background data. ► TeV Gamma-ray data affected by poor weather was successfully corrected

    The GCT camera for the Cherenkov Telescope Array

    Get PDF
    The Gamma Cherenkov Telescope (GCT) is one of the designs proposed for the Small Sized Telescope (SST) section of the Cherenkov Telescope Array (CTA). The GCT uses dual-mirror optics, resulting in a compact telescope with good image quality and a large field of view with a smaller, more economical, camera than is achievable with conventional single mirror solutions. The photon counting GCT camera is designed to record the flashes of atmospheric Cherenkov light from gamma and cosmic ray initiated cascades, which last only a few tens of nanoseconds. The GCT optics require that the camera detectors follow a convex surface with a radius of curvature of 1 m and a diameter of ~35 cm, which is approximated by tiling the focal plane with 32 modules. The first camera prototype is equipped with multi-anode photomultipliers, each comprising an 8×8 array of 6×6 mm2 pixels to provide the required angular scale, adding up to 2048 pixels in total. Detector signals are shaped, amplified and digitised by electronics based on custom ASICs that provide digitisation at 1 GSample/s. The camera is self-triggering, retaining images where the focal plane light distribution matches predefined spatial and temporal criteria. The electronics are housed in the liquid-cooled, sealed camera enclosure. LED flashers at the corners of the focal plane provide a calibration source via reflection from the secondary mirror. The first GCT camera prototype underwent preliminary laboratory tests last year. In November 2015, the camera was installed on a prototype GCT telescope (SST-GATE) in Paris and was used to successfully record the first Cherenkov light of any CTA prototype, and the first Cherenkov light seen with such a dual-mirror optical system. A second full-camera prototype based on Silicon Photomultipliers is under construction. Up to 35 GCTs are envisaged for CTA

    Constraints on the multi-TeV particle population in the Coma galaxy cluster with HESS observations

    Get PDF
    7 pages, 3 figures, accepted in Astronomy and AstrophysicsThe H.E.S.S. (High Energy Stereoscopic System) telescopes observed Coma for ~8hr in a search for gamma-ray emission at energies >1TeV. The large 3.5deg FWHM field of view of H.E.S.S. is ideal for viewing a range of targets at various sizes including the Coma cluster core, the radio-relic (1253+275) and merger/infall (NGC 4839) regions to the southwest, and features greater than deg away. No evidence for point-like nor extended TeV gamma-ray emission was found and upper limits to the TeV flux F(E) for E>1, >5, and >10TeV were set for the Coma core and other regions. Converting these limits to an energy flux E^2F(E) the lowest or most constraining is the E>5TeV upper limit for the Coma core (0.2deg radius) at ~8Crab flux units or ~10^{-13}ph cm^{-2} s^{-1}. The upper limits for the Coma core were compared with a prediction for the gamma-ray emission from proton--proton interactions, the level of which ultimately scales with the mass of the Coma cluster. A direct constraint using our most stringent limit for E>5 TeV, on the total energy content in non-thermal protons with injection energy spectrum proportional to E^{-2.1} and spatial distribution following the thermal gas in the cluster, is found to be ~0.2 times the thermal energy, or ~10^{62}erg. The E>5 TeV gamma-ray threshold in this case corresponds to cosmic-ray proton energies >50TeV. Our upper limits rule out the most optimistic theoretical models for gamma ray emission from clusters and complement radio observations which constrain the cosmic ray content in clusters at significantly lower proton energies, subject to assumptions on the magnetic field strength

    Energy Spectrum of Cosmic-Ray Electrons at TeV Energies

    Get PDF
    5 pages, 3 figures. Accepted for publication by Phys. Rev. Letters; modified to include latest ATIC data pointsThe very large collection area of ground-based gamma-ray telescopes gives them a substantial advantage over balloon/satellite based instruments in the detection of very-high-energy (>600 GeV) cosmic-ray electrons. Here we present the electron spectrum derived from data taken with the H.E.S.S. system of imaging atmospheric Cherenkov telescopes. In this measurement, the first of this type, we are able to extend the measurement of the electron spectrum beyond the range accessible to direct measurements. We find evidence for a substantial steepening in the energy spectrum above 600 GeV compared to lower energies

    Detection of very high energy radiation from HESS J1908+063 confirms the Milagro unidentified source MGRO J1908+06

    Get PDF
    Aims: Detection of a γ-ray source above 300 GeV is reported, confirming the unidentified source MGRO J1908+06, discovered by the Milagro collaboration at a median energy of 20 TeV. Methods: The source was observed during 27 h as part of the extension of the HESS Galactic plane survey to longitudes >30°. Results: HESS J1908+063 is detected at a significance level of 10.9σ with an integral flux above 1 TeV of (3.76 ± 0.29~stat± 0.75_sys)×10-12 ph cm-2 s-1, and a spectral photon index Γ = 2.10±0.07~stat± 0.2sys. The positions and fluxes of HESS J1908+063 and MGRO J1908+06 are in good agreement. Possible counterparts at other wavelengths and the origin of the γ-ray emission are discussed. The nearby unidentified GeV source, GRO J1908+0556 (GeV) which also remains unidentified and the new Fermi pulsar 0FGL J1907.5+0617, may be connected to the TeV source

    Spectrum and variability of the Galactic center VHE gamma-ray source HESS J1745-290

    Get PDF
    15 pages, 8 figures. Accepted in A&A. Referee formatA detailed study of the spectrum and variability of the source HESS J1745-290 in the Galactic Center (GC) region using new data from the H.E.S.S. array of Cherenkov telescopes is presented. Flaring activity and Quasi Periodic Oscillations (QPO) of HESS J1745-290 are investigated. The image analysis is performed with a combination of a semi-analytical shower model and the statistical moments based Hillas technique. The spectrum and lightcurves of HESS J1745-290 are derived with a likelihood method based on a spectral shape hypothesis. Rayleigh tests and Fourier analysis of the H.E.S.S. GC signal are used to study the periodicity of the source. With three-fold increase in statistics compared to previous work, a deviation from a simple power law spectrum is detected for the first time. The measured energy spectrum over the three years 2004, 2005 and 2006 of data taking is compatible with both a power law spectrum with an exponential cut-off and a broken power law spectrum. The curvature of the energy spectrum is likely to be intrinsic to the photon source as opposed to effects of interstellar absorption. No significant flux variation is found. Increases in the gamma-ray flux of HESS J1745-290 by at least a factor of two would be required for a 3 sigma detection of a flare of time scales of an hour. Investigation of possible QPO activity at periods claimed to be detected in X-rays does not show any periodicities in the H.E.S.S. signal

    Detection of very high energy radiation from HESS J1908+063 confirms the Milagro unidentified source MGRO J1908+06

    Get PDF
    Aims: Detection of a γ-ray source above 300 GeV is reported, confirming the unidentified source MGRO J1908+06, discovered by the Milagro collaboration at a median energy of 20 TeV. Methods: The source was observed during 27 h as part of the extension of the HESS Galactic plane survey to longitudes >30°. Results: HESS J1908+063 is detected at a significance level of 10.9σ with an integral flux above 1 TeV of (3.76 ± 0.29~stat± 0.75_sys)×10-12 ph cm-2 s-1, and a spectral photon index Γ = 2.10±0.07~stat± 0.2sys. The positions and fluxes of HESS J1908+063 and MGRO J1908+06 are in good agreement. Possible counterparts at other wavelengths and the origin of the γ-ray emission are discussed. The nearby unidentified GeV source, GRO J1908+0556 (GeV) which also remains unidentified and the new Fermi pulsar 0FGL J1907.5+0617, may be connected to the TeV source

    Discovery and follow-up studies of the extended, off-plane, VHE gamma-ray source HESS J1507-622

    Get PDF
    Context. The detection of gamma-rays in the very-high-energy (VHE) range (100 GeV?100 TeV) offers the possibility of studying the parent population of ultrarelativistic particles found in astrophysical sources, so it is useful for understanding the underlying astrophysical processes in nonthermal sources.Aims. The discovery of the VHE gamma-ray source HESS J1507-622 is reported and possibilities regarding its nature are investigated.Methods. The H.E.S.S. array of imaging atmospheric Cherenkov telescopes (IACTs) has a high sensitivity compared with previous instruments (~1% of the Crab flux in 25 h observation time for a 5? point-source detection) and has a large field of view (~5° in diameter). HESS J1507-622 was discovered within the ongoing H.E.S.S. survey of the inner Galaxy, and the source was also studied by means of dedicated multiwavelength observations.Results. A Galactic gamma-ray source, HESS J1507-622, located ~3.5° from the Galactic plane was detected with a statistical significance &gt;9?. Its energy spectrum is well fitted by a power law with spectral index ? = 2.24 ± 0.16stat ± 0.20sys and a flux above 1 TeV of (1.5 ± 0.4stat ± 0.3sys) × 10-12 cm-2 s-1. Possible interpretations (considering both hadronic and leptonic models) of the VHE gamma-ray emission are discussed in the absence of an obvious counterpart

    Probing the ATIC peak in the cosmic-ray electron spectrum with H.E.S.S.

    Get PDF
    The measurement of an excess in the cosmic-ray electron spectrum between 300 and 800 GeV by the ATIC experiment has - together with the PAMELA detection of a rise in the positron fraction up to ≈100 GeV - motivated many interpretations in terms of dark matter scenarios; alternative explanations assume a nearby electron source like a pulsar or supernova remnant. Here we present a measurement of the cosmic-ray electron spectrum with H.E.S.S. starting at 340 GeV. While the overall electron flux measured by H.E.S.S. is consistent with the ATIC data within statistical and systematic errors, the H.E.S.S. data exclude a pronounced peak in the electron spectrum as suggested for interpretation by ATIC. The H.E.S.S. data follow a power-law spectrum with spectral index of 3.0±0.1(stat.)± 0.3(syst.), which steepens at about 1 TeV
    corecore