6 research outputs found

    Consequences of Intraspecific Variation in Seed Dispersal for Plant Demography, Communities, Evolution and Global Change

    Get PDF
    As the single opportunity for plants to move, seed dispersal has an important impact on plant fitness, species distributions and patterns of biodiversity. However, models that predict dynamics such as risk of extinction, range shifts and biodiversity loss tend to rely on the mean value of parameters and rarely incorporate realistic dispersal mechanisms. By focusing on the mean population value, variation among individuals or variability caused by complex spatial and temporal dynamics is ignored. This calls for increased efforts to understand individual variation in dispersal and integrate it more explicitly into population and community models involving dispersal. However, the sources, magnitude and outcomes of intraspecific variation in dispersal are poorly characterized, limiting our understanding of the role of dispersal in mediating the dynamics of communities and their response to global change. In this manuscript, we synthesize recent research that examines the sources of individual variation in dispersal and emphasize its implications for plant fitness, populations and communities. We argue that this intraspecific variation in seed dispersal does not simply add noise to systems, but, in fact, alters dispersal processes and patterns with consequences for demography, communities, evolution and response to anthropogenic changes. We conclude with recommendations for moving this field of research forward

    Consequences of Intraspecific Variation in Seed Dispersal for Plant Demography, Communities, Evolution and Global Change

    Get PDF
    As the single opportunity for plants to move, seed dispersal has an important impact on plant fitness, species distributions and patterns of biodiversity. However, models that predict dynamics such as risk of extinction, range shifts and biodiversity loss tend to rely on the mean value of parameters and rarely incorporate realistic dispersal mechanisms. By focusing on the mean population value, variation among individuals or variability caused by complex spatial and temporal dynamics is ignored. This calls for increased efforts to understand individual variation in dispersal and integrate it more explicitly into population and community models involving dispersal. However, the sources, magnitude and outcomes of intraspecific variation in dispersal are poorly characterized, limiting our understanding of the role of dispersal in mediating the dynamics of communities and their response to global change. In this manuscript, we synthesize recent research that examines the sources of individual variation in dispersal and emphasize its implications for plant fitness, populations and communities. We argue that this intraspecific variation in seed dispersal does not simply add noise to systems, but, in fact, alters dispersal processes and patterns with consequences for demography, communities, evolution and response to anthropogenic changes. We conclude with recommendations for moving this field of research forward

    The internal structure of metacommunities

    No full text
    Current analyses of metacommunity data largely focus on global attributes across the entire metacommunity, such as mean alpha, beta, and gamma diversity, as well as the partitioning of compositional variation into single estimates of contributions of space and environmental effects and, more recently, possible contributions of species interactions. However, this view neglects the fact that different species and sites in the landscape can vary widely in how they contribute to these metacommunity-wide attributes. We argue for a new conceptual framework with matched analytics with the goals of studying the complex and interactive relations between process and pattern in metacommunities that is focused on the variation among species and among sites which we call the 'internal structure' of the metacommunity. To demonstrate how the internal structure could be studied, we create synthetic data using a process-based colonization-extinction metacommunity model. We then use joint species distribution models to estimate how the contributions of space, environment, and biotic interactions driving metacommunity assembly differ among species and sites. We find that this approach to the internal structure of metacommunities provides useful information about the distinct ways that different species and different sites contribute to metacommunity structure. Although it has limitations, our work points at a more general approach to understand how other possible complexities might affect internal structure and might thus be incorporated into a more cohesive metacommunity theory

    Consequences of intraspecific variation in seed dispersal for plant demography, communities, evolution and global change

    No full text
    corecore