346 research outputs found

    "They should have this in every court." Evaluation of the NSW Women’s Refuge Movement Women's Family Law Support Service (WFLSS)

    Get PDF
    This is an evaluation of the first support service in Australia for women attending the Family Courts. The WFLSS is a partnership between the NSW Women's Refuge Movement and the Family Court of Australia. This evaluation provides the views of women and court staff about the service

    Low molecular weight organic acids in aerosol particles from Rondônia, Brazil, during the biomass-burning, transition and wet periods

    No full text
    International audienceParticles from biomass burning and regional haze were sampled in Rondônia, Brazil, during dry, transition and wet periods from September to November 2002, as part of the LBA-SMOCC (Large-Scale Biosphere-Atmosphere Experiment in Amazonia ? Smoke, Aerosols, Clouds, Rainfall, and Climate) field campaign. Water soluble organic and inorganic compounds in bulk (High Volume and Stacked Filter Unit sampler) and size-resolved (Micro Orifice Uniform Deposit Impactor ? MOUDI) smoke samples were determined by ion chromatography. It was found that low molecular weight polar organic acids account for a significant fraction of the water soluble organic carbon (WSOC) in biomass burning aerosols (C2-C6 dicarboxylic acids reached up to 3.7% and one-ring aromatic acids reached up to 2% of fine fraction WSOC during burning period). Short dicarboxylic (C2-C6) acids are dominated by oxalic acid followed by malonic and succinic acids. The largest ionic species is ammonium sulfate (60?70% of ionic mass). It was found that most of the ionic mass is concentrated in submicrometer-sized particles. Based on the size distribution and correlations with K+, a known biomass burning tracer, it is suggested that many of the organic acids are directly emitted by vegetation fires. Concentrations of dicarboxylic acids in the front and back filters of high volume sampler were determined. Based on these measurements, it was concluded that in the neutral or slightly basic smoke particles typical of this region, dicarboxylic acids are mostly confined to the particulate phase. Finally, it is shown that the distribution of water soluble species shifts to larger aerosols sizes as the aerosol population ages and mixes with other aerosol types in the atmosphere

    Irreversible impacts of heat on the emissions of monoterpenes, sesquiterpenes, phenolic BVOC and green leaf volatiles from several tree species

    Get PDF
    Climate change will induce extended heat waves to parts of the vegetation more frequently. High temperatures may act as stress (thermal stress) on plants changing emissions of biogenic volatile organic compounds (BVOCs). As BVOCs impact the atmospheric oxidation cycle and aerosol formation, it is important to explore possible alterations of BVOC emissions under high temperature conditions. Applying heat to European beech, Palestine oak, Scots pine, and Norway spruce in a laboratory setup either caused the well-known exponential increases of BVOC emissions or induced irreversible changes of BVOC emissions. Considering only irreversible changes of BVOC emissions as stress impacts, we found that high temperatures decreased the <i>de novo</i> emissions of monoterpenes, sesquiterpenes and phenolic BVOC. This behaviour was independent of the tree species and whether the <i>de novo</i> emissions were constitutive or induced by biotic stress. <br><br> In contrast, application of thermal stress to conifers amplified the release of monoterpenes stored in resin ducts of conifers and induced emissions of green leaf volatiles. In particular during insect attack on conifers, the plants showed <i>de novo</i> emissions of sesquiterpenes and phenolic BVOCs, which exceeded constitutive monoterpene emissions from pools. The heat-induced decrease of <i>de novo</i> emissions was larger than the increased monoterpene release caused by damage of resin ducts. For insect-infested conifers the net effect of thermal stress on BVOC emissions could be an overall decrease. <br><br> Global change-induced heat waves may put hard thermal stress on plants. If so, we project that BVOC emissions increase is more than predicted by models only in areas predominantly covered with conifers that do not emit high amounts of sesquiterpenes and phenolic BVOCs. Otherwise overall effects of high temperature stress will be lower increases of BVOC emissions than predicted by algorithms that do not consider stress impacts

    Absorbing aerosols at high relative humidity: linking hygroscopic growth to optical properties

    Get PDF
    One of the major uncertainties in the understanding of Earth's climate system is the interaction between solar radiation and aerosols in the atmosphere. Aerosols exposed to high humidity will change their chemical, physical, and optical properties due to their increased water content. To model hydrated aerosols, atmospheric chemistry and climate models often use the volume weighted mixing rule to predict the complex refractive index (RI) of aerosols when they interact with high relative humidity, and, in general, assume homogeneous mixing. This study explores the validity of these assumptions. A humidified cavity ring down aerosol spectrometer (CRD-AS) and a tandem hygroscopic DMA (differential mobility analyzer) are used to measure the extinction coefficient and hygroscopic growth factors of humidified aerosols, respectively. The measurements are performed at 80% and 90%RH at wavelengths of 532 nm and 355 nm using size-selected aerosols with different degrees of absorption; from purely scattering to highly absorbing particles. The ratio of the humidified to the dry extinction coefficients (<i>f</i>RH<sub>ext</sub>(%RH, Dry)) is measured and compared to theoretical calculations based on Mie theory. Using the measured hygroscopic growth factors and assuming homogeneous mixing, the expected RIs using the volume weighted mixing rule are compared to the RIs derived from the extinction measurements. <br><br> We found a weak linear dependence or no dependence of <i>f</i>RH(%RH, Dry) with size for hydrated absorbing aerosols in contrast to the non-monotonically decreasing behavior with size for purely scattering aerosols. No discernible difference could be made between the two wavelengths used. Less than 7% differences were found between the real parts of the complex refractive indices derived and those calculated using the volume weighted mixing rule, and the imaginary parts had up to a 20% difference. However, for substances with growth factor less than 1.15 the volume weighted mixing rule assumption needs to be taken with caution as the imaginary part of the complex RI can be underestimated

    On Dice and Coins: Models of Computation for Random Generation

    Get PDF
    AbstractTo examine the concept of random generation in bounded, as opposed to expected, polynomial time, a model of a probabilistic Turing machine (PTM) with the ability to make random choices with any (small) rational bias is necessary. This ability is equivalent to that of being able to simulate rolling any k-sided die (where [k] is polynomial in the length of the input). We would like to minimize the amount of hardware required for a machine with this capability. This leads to the problem of efficiently simulating a family of dice with a few different types of biased coins as possible. In the special case of simulating one n-sided die, we prove that only two types of biased coins are necessary, which can be reduced to one if we allow irrationally biased coins. This simulation is efficient, taking O(log n) coin flips. For the general case we get a tight time vs number of biases tradeoff; for example, with O(log n) different biases, we can simulate, for any i < n, an i-sided die in O(log n) coin flips

    SPARTAN: a global network to evaluate and enhance satellite-based estimates of ground-level particulate matter for global health applications

    Get PDF
    Ground-based observations have insufficient spatial coverage to assess long-term human exposure to fine particulate matter (PM2.5) at the global scale. Satellite remote sensing offers a promising approach to provide information on both short-and long-term exposure to PM2.5 at local-to-global scales, but there are limitations and outstanding questions about the accuracy and precision with which ground-level aerosol mass concentrations can be inferred from satellite remote sensing alone. A key source of uncertainty is the global distribution of the relationship between annual average PM2.5 and discontinuous satellite observations of columnar aerosol optical depth (AOD). We have initiated a global network of ground-level monitoring stations designed to evaluate and enhance satellite remote sensing estimates for application in health-effects research and risk assessment. This Surface PARTiculate mAtter Network (SPARTAN) includes a global federation of ground-level monitors of hourly PM2.5 situated primarily in highly populated regions and collocated with existing ground-based sun photometers that measure AOD. The instruments, a three-wavelength nephelometer and impaction filter sampler for both PM2.5 and PM10, are highly autonomous. Hourly PM2.5 concentrations are inferred from the combination of weighed filters and nephelometer data. Data from existing networks were used to develop and evaluate network sampling characteristics. SPARTAN filters are analyzed for mass, black carbon, water-soluble ions, and metals. These measurements provide, in a variety of regions around the world, the key data required to evaluate and enhance satellite-based PM2.5 estimates used for assessing the health effects of aerosols. Mean PM2.5 concentrations across sites vary by more than 1 order of magnitude. Our initial measurements indicate that the ratio of AOD to ground-level PM2.5 is driven temporally and spatially by the vertical profile in aerosol scattering. Spatially this ratio is also strongly influenced by the mass scattering efficiency.Fil: Snider, G.. Dalhousie University Halifax; CanadáFil: Weagle, C. L.. Dalhousie University Halifax; CanadáFil: Martin, R. V.. Dalhousie University Halifax; Canadá. University of Cambridge; Reino UnidoFil: van Donkelaar, A.. Dalhousie University Halifax; CanadáFil: Conrad, K.. Dalhousie University Halifax; CanadáFil: Cunningham, D.. Dalhousie University Halifax; CanadáFil: Gordon, C.. Dalhousie University Halifax; CanadáFil: Zwicker, M.. Dalhousie University Halifax; CanadáFil: Akoshile, C.. University of Ilorin; NigeriaFil: Artaxo, P.. Governo Do Estado de Sao Paulo; BrasilFil: Anh, N. X.. Vietnam Academy of Science and Technology. Institute of Geophysics; VietnamFil: Brook, J.. University of Toronto; CanadáFil: Dong, J.. Tsinghua University; ChinaFil: Garland, R. M.. North-West University; SudáfricaFil: Greenwald, R.. Rollins School of Public Health; Estados UnidosFil: Griffith, D.. Council for Scientific and Industrial Research; SudáfricaFil: He, K.. Tsinghua University; ChinaFil: Holben, B. N.. NASA Goddard Space Flight Center; Estados UnidosFil: Kahn, R.. NASA Goddard Space Flight Center; Estados UnidosFil: Koren, I.. Weizmann Institute Of Science Israel; IsraelFil: Lagrosas, N.. Manila Observatory, Ateneo de Manila University campus; FilipinasFil: Lestari, P.. Institut Teknologi Bandung; IndonesiaFil: Ma, Z.. Rollins School of Public Health; Estados UnidosFil: Vanderlei Martins, J.. University of Maryland; Estados UnidosFil: Quel, Eduardo Jaime. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Rudich, Y.. Weizmann Institute Of Science Israel; IsraelFil: Salam, A.. University Of Dhaka; BangladeshFil: Tripathi, S. N.. Indian Institute Of Technology, Kanpur; IndiaFil: Yu, C.. Rollins School of Public Health; Estados UnidosFil: Zhang, Q.. Tsinghua University; ChinaFil: Zhang, Y.. Tsinghua University; ChinaFil: Brauer, M.. University of British Columbia; CanadáFil: Cohen, A.. Health Effects Institute; Estados UnidosFil: Gibson, M. D.. Dalhousie University Halifax; CanadáFil: Liu, Y.. Rollins School of Public Health; Estados Unido

    The formation, properties and impact of secondary organic aerosol: current and emerging issues

    Get PDF
    Secondary organic aerosol (SOA) accounts for a significant fraction of ambient tropospheric aerosol and a detailed knowledge of the formation, properties and transformation of SOA is therefore required to evaluate its impact on atmospheric processes, climate and human health. The chemical and physical processes associated with SOA formation are complex and varied, and, despite considerable progress in recent years, a quantitative and predictive understanding of SOA formation does not exist and therefore represents a major research challenge in atmospheric science. This review begins with an update on the current state of knowledge on the global SOA budget and is followed by an overview of the atmospheric degradation mechanisms for SOA precursors, gas-particle partitioning theory and the analytical techniques used to determine the chemical composition of SOA. A survey of recent laboratory, field and modeling studies is also presented. The following topical and emerging issues are highlighted and discussed in detail: molecular characterization of biogenic SOA constituents, condensed phase reactions and oligomerization, the interaction of atmospheric organic components with sulfuric acid, the chemical and photochemical processing of organics in the atmospheric aqueous phase, aerosol formation from real plant emissions, interaction of atmospheric organic components with water, thermodynamics and mixtures in atmospheric models. Finally, the major challenges ahead in laboratory, field and modeling studies of SOA are discussed and recommendations for future research directions are proposed
    corecore