89 research outputs found

    The bacterial community composition of the surface microlayer in a high mountain lake

    Get PDF
    The existence of bacterioneuston in aquatic ecosystems is well established, but little is known about its composition and dynamics, particularly in lakes. The bacterioneuston underlies extreme conditions at the air-water boundary, which may influence its dynamics in a different way compared with the bacterioplankton. In this study, we assessed quantitative changes in major bacterial groups of the surface microlayer (SML) (upper 900 μm) and the underlying water (ULW) (0.2-0.5 m depth) of an alpine lake during two consecutive ice-free seasons. Analysis of the bacterial community composition was done using catalyzed reporter deposition FISH with oligonucleotide probes. In addition, several physicochemical parameters were measured to characterize these two water layers. Dissolved organic carbon was consistently enriched in the SML and the dissolved organic matter pool presented clear signals of photodegradation and photobleaching. The water temperature was generally colder in the SML than in the subsurface. The bacterial community of the SML and the ULW was dominated by Betaproteobacteria and Actinobacteria. The bacterial community composition was associated with different combinations of physicochemical factors in these two layers, but temporal changes showed similar trends in both layers over the two seasons. Our results identify the SML of alpine lakes as a microhabitat where specific bacterial members such as of Betaproteobacteria seem to be efficient colonizer

    Large-scale invasion of unicellular eukaryotic genomes by integrating DNA viruses

    Get PDF
    Eukaryotic genomes contain a variety of endogenous viral elements (EVEs), which are mostly derived from RNA and ssDNA viruses that are no longer functional and are considered to be “genomic fossils.” Genomic surveys of EVEs, however, are strongly biased toward animals and plants, whereas protists, which represent the majority of eukaryotic diversity, remain poorly represented. Here, we show that protist genomes harbor tens to thousands of diverse, ~14 to 40 kbp long dsDNA viruses. These EVEs, composed of virophages, Polinton-like viruses, and related entities, have remained hitherto hidden owing to poor sequence conservation between virus groups and their repetitive nature that precluded accurate short-read assembly. We show that long-read sequencing technology is ideal for resolving virus insertions. Many protist EVEs appear intact, and most encode integrases, which suggests that they have actively colonized hosts across the tree of eukaryotes. We also found evidence for gene expression in host transcriptomes and that closely related virophage and Polinton-like virus genomes are abundant in viral metagenomes, indicating that many EVEs are probably functional viruses

    Bacterial Communities Associated With Spherical Nostoc Macrocolonies

    Get PDF
    Species of the genus Nostoc (Cyanobacteria) can form large colonies of up to several centimeters in diameter that may represent a unique habitat for bacteria in freshwaters. Bacteria inside the colony are probably segregated from the surrounding water and largely dependent on the metabolism of this primary producer. However, the existence of a specific bacterial community associated with free-living representatives of Nostoc from lakes and streams is unknown. Here, we studied large Nostoc spp. colonies (ca. 2–10 cm in diameter) from two adjacent, high altitude aquatic environments and assessed the diversity, and community composition of the bacterial community associated with the inner gelatinous matrix (GM). Further, we compared this community with that of the lake’s littoral zone where the colonies live or with the outer layer (OL) of the colony in samples collected from a stream. Alpha bacterial diversity in the inner GM of the colonies from both sites was lower than in the littoral zone or than in the OL. Significant differences in community composition were found between the inner and the OL, as well as between the inner GM, and the littoral zone. Further, these differences were supported by the putative metabolic processes of the bacterial communities. Our results indicate the existence of a specific bacterial community inside macrocolonies of Nostoc spp. and also imply that the inner environment exerts a strong selection. Finally, these large colonies represent not only a unique habitat, but probably also a hotspot of bacterial activity in an otherwise oligotrophic environment

    The influence of predator community composition on photoprotective traits of copepods.

    Get PDF
    Trait expression of natural populations often jointly depends on prevailing abiotic environmental conditions and predation risk. Copepods, for example, can vary their expression of compounds that confer protection against ultraviolet radiation (UVR), such as astaxanthin and mycosporine-like amino acids (MAAs), in relation to predation risk. Despite ample evidence that copepods accumulate less astaxanthin in the presence of predators, little is known about how the community composition of planktivorous fish can affect the overall expression of photoprotective compounds. Here, we investigate how the (co-)occurrence of Arctic charr (Salvelinus alpinus) and threespine stickleback (Gasterosteus aculeatus) affects the photoprotective phenotype of the copepod Leptodiaptomus minutus in lake ecosystems in southern Greenland. We found that average astaxanthin and MAA contents were lowest in lakes with stickleback, but we found no evidence that these photoprotective compounds were affected by the presence of charr. Furthermore, variance in astaxanthin among individual copepods was greatest in the presence of stickleback and the astaxanthin content of copepods was negatively correlated with increasing stickleback density. Overall, we show that the presence and density of stickleback jointly affect the content of photoprotective compounds by copepods, illustrating how the community composition of predators in an ecosystem can determine the expression of prey traits that are also influenced by abiotic stressors

    At the edge and on the top: molecular identification and ecology of Daphnia dentifera and D. longispina in high-altitude Asian lakes

    Get PDF
    The occurrence of members of the highly diverse Daphnia longispina complex in Southern and Central Asian high-mountain lakes has been recognized for more than a century. Until now, however, no molecular data have been available for these populations inhabiting the "Roof of the World.” Here, we present the first identification for D. gr. longispina from that region based on a molecular phylogeny. Our findings show that alpine lakes in the Pamir and Himalaya mountains host populations of widespread species of the complex, for which these are the highest known localities. A spineless morph from the Himalaya region, previously labeled as D. longispina var. aspina, was clustering tightly with D. dentifera, while a population from the Pamir mountain range was grouped with D. longispina. In addition, we analyzed ecological data available for lakes in the Khumbu region (Himalaya) to investigate ecological preferences of non-pigmented D. gr. longispina. The identified factors can at least partly be related to avoidance of high UV conditions by this species. We conclude that the widespread species D. dentifera and D. longispina also colonized the Asian high-mountain lakes, and identify the need for further research to trace the possible effect of rapid environmental changes in this region on the diversity and ecology of high-altitude Daphnia population

    Sources of mycosporine-like amino acids in planktonic Chlorella-bearing ciliates (Ciliophora)

    Get PDF
    Mycosporine-like amino acids (MAAs) are a family of secondary metabolites known to protect organisms exposed to solar UV radiation. We tested their distribution among several planktonic ciliates bearing Chlorella isolated from an oligo-mesotrophic lake in Tyrol, Austria. In order to test the origin of these compounds, the MAAs were assessed by high performance liquid chromatography in both the ciliates and their symbiotic algae.Considering all Chlorella-bearing ciliates, we found: (i) seven different MAAs (mycosporine-glycine, palythine, asterina-330, shinorine, porphyra-334, usujirene, palythene); (ii) one to several MAAs per species and (iii) qualitative and quantitative seasonal changes in the MAAs (e.g. in Pelagodileptus trachelioides). In all species tested, concentrations of MAAs were always <1% of ciliate dry weight.Several MAAs were also identified in the Chlorella isolated from the ciliates, thus providing initial evidence for their symbiotic origin. In Uroleptus sp., however, we found evidence for a dietary source of MAAs.Our results suggest that accumulation of MAAs in Chlorella-bearing ciliates represents an additional benefit of this symbiosis and an adaptation for survival in sunlit, UV-exposed waters

    The bacterial community composition of the surface microlayer in a high mountain lake

    Get PDF
    The existence of bacterioneuston in aquatic ecosystems is well established, but little is known about its composition and dynamics, particularly in lakes. The bacterioneuston underlies extreme conditions at the air–water boundary, which may influence its dynamics in a different way compared with the bacterioplankton. In this study, we assessed quantitative changes in major bacterial groups of the surface microlayer (SML) (upper 900 μm) and the underlying water (ULW) (0.2–0.5 m depth) of an alpine lake during two consecutive ice-free seasons. Analysis of the bacterial community composition was done using catalyzed reporter deposition FISH with oligonucleotide probes. In addition, several physicochemical parameters were measured to characterize these two water layers. Dissolved organic carbon was consistently enriched in the SML and the dissolved organic matter pool presented clear signals of photodegradation and photobleaching. The water temperature was generally colder in the SML than in the subsurface. The bacterial community of the SML and the ULW was dominated by Betaproteobacteria and Actinobacteria. The bacterial community composition was associated with different combinations of physicochemical factors in these two layers, but temporal changes showed similar trends in both layers over the two seasons. Our results identify the SML of alpine lakes as a microhabitat where specific bacterial members such as of Betaproteobacteria seem to be efficient colonizers

    Anoxia begets anoxia: a positive feedback to the deoxygenation of temperate lakes

    Get PDF
    Declining oxygen concentrations in the deep waters of lakes worldwide pose a pressing environmental and societal challenge. Existing theory suggests that low deep-water dissolved oxygen (DO) concentrations could trigger a positive feedback through which anoxia (i.e., very low DO) during a given summer begets increasingly severe occurrences of anoxia in following summers. Specifically, anoxic conditions can promote nutrient release from sediments, thereby stimulating phytoplankton growth, and subsequent phytoplankton decomposition can fuel heterotrophic respiration, resulting in increased spatial extent and duration of anoxia. However, while the individual relationships in this feedback are well established, to our knowledge, there has not been a systematic analysis within or across lakes that simultaneously demonstrates all of the mechanisms necessary to produce a positive feedback that reinforces anoxia. Here, we compiled data from 656 widespread temperate lakes and reservoirs to analyze the proposed anoxia begets anoxia feedback. Lakes in the dataset span a broad range of surface area (1–126,909 ha), maximum depth (6–370 m), and morphometry, with a median time-series duration of 30 years at each lake. Using linear mixed models, we found support for each of the positive feedback relationships between anoxia, phosphorus concentrations, chlorophyll a concentrations, and oxygen demand across the 656-lake dataset. Likewise, we found further support for these relationships by analyzing time-series data from individual lakes. Our results indicate that the strength of these feedback relationships may vary with lake-specific characteristics: For example, we found that surface phosphorus concentrations were more positively associated with chlorophyll a in high-phosphorus lakes, and oxygen demand had a stronger influence on the extent of anoxia in deep lakes. Taken together, these results support the existence of a positive feedback that could magnify the effects of climate change and other anthropogenic pressures driving the development of anoxia in lakes around the world

    Climate change drives widespread shifts in lake thermal habitat

    Get PDF
    Lake surfaces are warming worldwide, raising concerns about lake organism responses to thermal habitat changes. Species may cope with temperature increases by shifting their seasonality or their depth to track suitable thermal habitats, but these responses may be constrained by ecological interactions, life histories or limiting resources. Here we use 32 million temperature measurements from 139 lakes to quantify thermal habitat change (percentage of non-overlap) and assess how this change is exacerbated by potential habitat constraints. Long-term temperature change resulted in an average 6.2% non-overlap between thermal habitats in baseline (1978–1995) and recent (1996–2013) time periods, with non-overlap increasing to 19.4% on average when habitats were restricted by season and depth. Tropical lakes exhibited substantially higher thermal non-overlap compared with lakes at other latitudes. Lakes with high thermal habitat change coincided with those having numerous endemic species, suggesting that conservation actions should consider thermal habitat change to preserve lake biodiversity
    corecore