67 research outputs found

    Une sonde photométrique pour l'analyse in situ : Principe, méthode, premiers essais

    Get PDF
    Certains composés dissous ne sont pas stables une fois prélevés hors de leur milieu. Pour éviter que l'information ne se perde entre le prélèvement et l'analyse, il est nécessaire d'effectuer cette dernière in situ. La solution que nous présentons, consiste à développer une réaction colorimétrique en profondeur; la cellule photométrique est immergée et reliée à un spectrophotomètre en surface, par 2 fibres optiques (fig. 1a, b, c). Cependant, lors d'un essai préliminaire, nous avons observé que, dans le circuit de mélange de la sonde, les proportions entre réactif et échantillon ne sont pas constantes. Ces variations de débits sont corrigées par des mesures à deux longueurs d'onde (λ1 et λ2)* et par l'adjonction d'un colorant auxiliaire ne perturbant pas la réaction calorimétrique. L'étalonnage se fait directement sur la cellule photométrique : dans un diagramme Absorbance à λ1 = f (Absorbance à λ2) (fig. 2), on place une droite d'étalonnage et des points particuliers. Les règles de mélange sont vérifiées indépendamment de toute réaction chimique avec différentes solutions d'hélianthine dans un tampon à pH 7 et du rouge de chlorophénol à la place du réactif (fig. 4 et 5). En outre nous utilisons le rouge de chlorophénol, jaune sous forme acide, comme colorant auxiliaire pour le dosage du fer total dans un premier essai in situ (lac d'Aydat, Puy de Dôme, France). Les résultats sont comparés à ceux obtenus par prélèvements et analyses au laboratoire (fig. 6). L'accord est satisfaisant. L'incorporation au système présenté, d'une pompe osmotique devrait permettre, avec cet appareillage simple, des mesures pendant plusieurs mois sans intervention.Various dissolved compounds are mot stables in surface conditions. We realized a prototype to collect chemical data related to redox sensitive species without any contact with the atmospheric oxygen.The principle of this probe for in situ measurements is to produce colorimetric reaction in depth. A photometric cell and a horizontal coiled glass tube for fluid mixing are immersed and connected with two optic fibers to a spectrophotometer on boat (fig. la, b, c). Reagent is injected continuously from surface and sample is sucked up with a peristaltic pump through a tubular filter.Every species which can be analysed by colorimetric method should be determined, in deep river or in lake, with this simple equipment.Nevertheless, during preliminary trial, we detected a lack of reproducibility in the mixing ratio of the sample with the complexing agent. The problem is solved by adding an auxiliary dye with reagent and measuring optical densities at two different wavelengths (λ1 and λ2). In the system, with a the sample proportion, absorbance A at λ is expressed as :A=ɛe∙l∙Ce∙α+ɛr∙l∙Cr∙(1-α)We suggest to calibrate directly the cell of the probe and work in a calibration graph. It is built with first, marking on an A1λ1=f(A2λ2)graph (fig. 2), the « pivot » point (P) (when α= 0), second, plotting the « calibration curve »A2=A1 (ɛe2/ɛe1)(when α= 1), third, plotting the different S1 (A1i, A2i) measured from standards. Therefore, if sample signal Re at two wavelengths is plotted in this graph, by joining P and Re, the straight line intersects with calibration curve at C. On this curve, interpolation of C between two standards determine the concentration of the analyte.Experimental verification of the mixing rule has been clone independently of chemical reaction, with different heliantine solutions in pH 7 buffer as samples and chlorophenol red as reagent, bath in laboratory and at 15 meters depth (Beffes lake, France) (fig. 4 and 5).Furthermore, chlorophenol red, previously tested, is used as auxiliary dye for total iron measurement, in Aydat lake (Puy de Dôme, France) for a first in situ trial.Results are compared to those got from oceanographic bottle sampling and laboratory analysis (fig. 6). Data from the probe are in good agreement with data from the laboratory method.Next development of this chemical sensor will consist in adding to the system an osmotic pump which should allow measurements without intervention during several months

    High temperature (HT) polymer electrolyte membrande fuel cells (PEMFC) - A review

    Get PDF
    One possible solution of combating issues posed by climate change is the use of the High Temperature (HT) Polymer Electrolyte Membrane (PEM) Fuel Cell (FC) in some applications. The typical HT-PEMFC operating temperatures are in the range of 100e200 o C which allows for co-generation of heat and power, high tolerance to fuel impurities and simpler system design. This paper reviews the current literature concerning the HT-PEMFC, ranging from cell materials to stack and stack testing. Only acid doped PBI membranes meet the US DOE (Department of Energy) targets for high temperature membranes operating under no humidification on both anode and cathode sides (barring the durability). This eliminates the stringent requirement for humidity however, they have many potential drawbacks including increased degradation, leaching of acid and incompatibility with current state-of-the-art fuel cell materials. In this type of fuel cell, the choice of membrane material determines the other fuel cell component material composition, for example when using an acid doped system, the flow field plate material must be carefully selected to take into account the advanced degradation. Novel research is required in all aspects of the fuel cell components in order to ensure that they meet stringent durability requirements for mobile applications.Web of Scienc

    Preparation of thin proton conducting membranes by means of EPD

    No full text

    Potential model for tetrathiafulvalene based on inelastic neutron scattering and Raman spectra

    No full text
    Tetrathiafulvalene (TTF) is a key molecule in the family of charge-transfer salts of interest for their novel transport properties. The correspondence between transport property and electron-molecular vibration coupling requires that we understand the phonon density of states for these materials. Here we report the results of a low temperature study of neutral TTF using both inelastic neutron scattering spectroscopy and Raman spectroscopy. The new data has been interpreted using the CLIMAX code to calculate the neutron spectral profile which has also been calculated based on a set of force constants derived using Density Functional Theory to calculate the ground state energy of neutral TTF. The two approaches lead to a concordant set of harmonic force constants for the in-plane and out-of-plane normal modes of TTF.Radiation, Radionuclides and ReactorsApplied Science

    Proton insertion in spinel lithium manganates and the effect of manganese substitution

    No full text
    Lithium manganate spinels with the formula Li1+xMn2~xO4 undergo lithium-proton ion exchange to give a defect lambda-MnO2 phase which can act as a lithium selective sorbent. The substitution of manganese by other metals, such as Co, Cr, Ti and Ga allow the structural properties of the spinel lattice to be modifed and tailored. This work uses neutron diffraction, inelastic neutron scattering, XAFS and atomistic calculations to show that in the non-substituted spinel, inserted protons are present predominantly as hydroxyl groups directed into the vacant 8a site, with an orientation influenced by the presence of manganese vacancies. The influence of cation substitution is explained within this context
    corecore