7 research outputs found

    Constructed Wetlands for Agricultural Wastewater Treatment in Northeastern North America:A Review

    Get PDF
    Constructed wetlands (CW) are a treatment option for agricultural wastewater. Their ability to adequately function in cold climates continues to be evaluated as they are biologically active systems that depend on microbial and plant activity. In order to assess their performance and to highlight regional specific design considerations, a review of CWs in Eastern Canada and the Northeastern USA was conducted. Here, we synthesize performance data from 21 studies, in which 25 full-scale wetlands were assessed. Where possible, data were separated seasonally to evaluate the climatic effects on treatment performance. The wastewater parameters considered were five-day biochemical oxygen demand (BOD5), total suspended solids (TSS), E. coli, fecal coliforms, total Kjeldahl nitrogen (TKN), ammonia/ammonium (NH3/NH4+-N), nitrate-nitrogen (NO3−-N), and total phosphorus (TP). Average concentration reductions were: BOD5 81%, TSS 83%, TKN 75%, NH4+-N 76%, NO3−-N 42%, and TP 64%. Average log reductions for E. coli and fecal coliforms were 1.63 and 1.93, respectively. Average first order areal rate constants (ka, m·y−1) were: BOD5 6.0 m·y−1, TSS 7.7 m·y−1, E. coli 7.0 m·y−1, fecal coliforms 9.7 m·y−1, TKN 3.1 m·y−1, NH4+-N 3.3 m·y−1, NO3−-N 2.5 m·y−1, and TP 2.9 m·y−1. In general, CWs effectively treated a variety of agricultural wastewaters, regardless of season

    Identification and Preliminary Characterization of a Potent, Safe, and Orally Efficacious Inhibitor of Acyl-CoA:Diacylglycerol Acyltransferase 1

    No full text
    A high-throughput screen against human DGAT-1 led to the identification of a core structure that was subsequently optimized to afford the potent, selective, and orally bioavailable compound <b>14</b>. Oral administration at doses ≄0.03 mg/kg significantly reduced postprandial triglycerides in mice following an oral lipid challenge. Further assessment in both acute and chronic safety pharmacology and toxicology studies demonstrated a clean profile up to high plasma levels, thus culminating in the nomination of <b>14</b> as clinical candidate ABT-046

    Measuring Judicial Ideology Using Law Clerk Hiring

    No full text

    The Ectocarpus genome and the independent evolution of multicellularity in brown algae

    No full text
    Brown algae (Phaeophyceae) are complex photosynthetic organisms with a very different evolutionary history to green plants, to which they are only distantly related1. These seaweeds are the dominant species in rocky coastal ecosystems and they exhibit many interesting adaptations to these, often harsh, environments. Brown algae are also one of only a small number of eukaryotic lineages that have evolved complex multicellularity (Fig. 1). We report the 214?million base pair (Mbp) genome sequence of the filamentous seaweed Ectocarpus siliculosus (Dillwyn) Lyngbye, a model organism for brown algae2, 3, 4, 5, closely related to the kelps6, 7 (Fig. 1). Genome features such as the presence of an extended set of light-harvesting and pigment biosynthesis genes and new metabolic processes such as halide metabolism help explain the ability of this organism to cope with the highly variable tidal environment. The evolution of multicellularity in this lineage is correlated with the presence of a rich array of signal transduction genes. Of particular interest is the presence of a family of receptor kinases, as the independent evolution of related molecules has been linked with the emergence of multicellularity in both the animal and green plant lineages. The Ectocarpus genome sequence represents an important step towards developing this organism as a model species, providing the possibility to combine genomic and genetic2 approaches to explore these and other4, 5 aspects of brown algal biology further.<br/
    corecore