464 research outputs found
Projection and ground state correlations made simple
We develop and test efficient approximations to estimate ground state
correlations associated with low- and zero-energy modes. The scheme is an
extension of the generator-coordinate-method (GCM) within Gaussian overlap
approximation (GOA). We show that GOA fails in non-Cartesian topologies and
present a topologically correct generalization of GOA (topGOA). An RPA-like
correction is derived as the small amplitude limit of topGOA, called topRPA.
Using exactly solvable models, the topGOA and topRPA schemes are compared with
conventional approaches (GCM-GOA, RPA, Lipkin-Nogami projection) for
rotational-vibrational motion and for particle number projection. The results
shows that the new schemes perform very well in all regimes of coupling.Comment: RevTex, 12 pages, 7 eps figure
The fully entangled fraction as an inclusive measure of entanglement applications
Characterizing entanglement in all but the simplest case of a two qubit pure
state is a hard problem, even understanding the relevant experimental
quantities that are related to entanglement is difficult. It may not be
necessary, however, to quantify the entanglement of a state in order to
quantify the quantum information processing significance of a state. It is
known that the fully entangled fraction has a direct relationship to the
fidelity of teleportation maximized under the actions of local unitary
operations. In the case of two qubits we point out that the fully entangled
fraction can also be related to the fidelities, maximized under the actions of
local unitary operations, of other important quantum information tasks such as
dense coding, entanglement swapping and quantum cryptography in such a way as
to provide an inclusive measure of these entanglement applications. For two
qubit systems the fully entangled fraction has a simple known closed-form
expression and we establish lower and upper bounds of this quantity with the
concurrence. This approach is readily extendable to more complicated systems.Comment: 14 pages, 2 figures, accepted in Physics Letters
Quantum entanglement with acousto-optic modulators: 2-photon beatings and Bell experiments with moving beamsplitters
We present an experiment testing quantum correlations with frequency shifted
photons. We test Bell inequality with 2-photon interferometry where we replace
the beamsplitters by acousto-optic modulators, which are equivalent to moving
beamsplitters. We measure the 2-photon beatings induced by the frequency
shifts, and we propose a cryptographic scheme in relation. Finally, setting the
experiment in a relativistic configuration, we demonstrate that the quantum
correlations are not only independent of the distance but also of the time
ordering between the two single-photon measurements.Comment: 14 pages, 16 figure
Presymptomatic cognitive and neuroanatomical changes in genetic frontotemporal dementia in the Genetic Frontotemporal dementia Initiative (GENFI) study: A cross-sectional analysis
Background: Frontotemporal dementia is a highly heritable neurodegenerative disorder. In about a third of patients, the disease is caused by autosomal dominant genetic mutations usually in one of three genes: progranulin (. GRN), microtubule-associated protein tau (. MAPT), or chromosome 9 open reading frame 72 (. C9orf72). Findings from studies of other genetic dementias have shown neuroimaging and cognitive changes before symptoms onset, and we aimed to identify whether such changes could be shown in frontotemporal dementia. Methods: We recruited participants to this multicentre study who either were known carriers of a pathogenic mutation in GRN, MAPT, or C9orf72, or were at risk of carrying a mutation because a first-degree relative was a known symptomatic carrier. We calculated time to expected onset as the difference between age at assessment and mean age at onset within the family. Participants underwent a standardised clinical assessment and neuropsychological battery. We did MRI and generated cortical and subcortical volumes using a parcellation of the volumetric T1-weighted scan. We used linear mixed-effects models to examine whether the association of neuropsychology and imaging measures with time to expected onset of symptoms differed between mutation carriers and non-carriers. Findings: Between Jan 30, 2012, and Sept 15, 2013, we recruited participants from 11 research sites in the UK, Italy, the Netherlands, Sweden, and Canada. We analysed data from 220 participants: 118 mutation carriers (40 symptomatic and 78 asymptomatic) and 102 non-carriers. For neuropsychology measures, we noted the earliest significant differences between mutation carriers and non-carriers 5 years before expected onset, when differences were significant for all measures except for tests of immediate recall and verbal fluency. We noted the largest Z score differences between carriers and non-carriers 5 years before expected onset in tests of naming (Boston Naming Test -0·7; SE 0·3) and executive function (Trail Making Test Part B, Digit Span backwards, and Digit Symbol Task, all -0·5, SE 0·2). For imaging measures, we noted differences earliest for the insula (at 10 years before expected symptom onset, mean volume as a percentage of total intracranial volume was 0·80% in mutation carriers and 0·84% in non-carriers; difference -0·04, SE 0·02) followed by the temporal lobe (at 10 years before expected symptom onset, mean volume as a percentage of total intracranial volume 8·1% in mutation carriers and 8·3% in non-carriers; difference -0·2, SE 0·1). Interpretation: Structural imaging and cognitive changes can be identified 5-10 years before expected onset of symptoms in asymptomatic adults at risk of genetic frontotemporal dementia. These findings could help to define biomarkers that can stage presymptomatic disease and track disease progression, which will be important for future therapeutic trials. Funding: Centres of Excellence in Neurodegenerati
Why don't some men with banked sperm respond to letters about their stored samples?
Long-term storage of banked sperm, especially when it is not needed, for reproductive purposes, is costly and poses practical problems for sperm banks. For sperm banks to function efficiently, men must understand the implications of unnecessary storage, and make timely decisions about disposal of their own samples. Men who bank sperm prior to cancer treatment are routinely offered follow-up consultations to test their fertility, update consent and, where necessary, expedite referral for Assisted Conception. Yet sperm banks report that men do not respond to letters, suggesting samples are stored needlessly. We conducted semi-structured interviews with six men with a history of not responding to letters, to document reasons for non-response. Interviews were transcribed and analysed using Interpretive Phenomenological Analysis. Men's reasons for not responding are a complex interplay between past, present and future perspectives. In terms of their past, information is important on diagnosis, because men must understand that fertility can change after treatment. Present and future concerns focus on fears of being told fertility has not recovered and being pressured to dispose of banked sperm. The challenge is to devise invitation letters that address men's concerns while offering them tangible benefits and peace of mind
Velocity-space sensitivity of the time-of-flight neutron spectrometer at JET
The velocity-space sensitivities of fast-ion diagnostics are often described by so-called weight functions. Recently, we formulated weight functions showing the velocity-space sensitivity of the often dominant beam-target part of neutron energy spectra. These weight functions for neutron emission spectrometry (NES) are independent of the particular NES diagnostic. Here we apply these NES weight functions to the time-of-flight spectrometer TOFOR at JET. By taking the instrumental response function of TOFOR into account, we calculate time-of-flight NES weight functions that enable us to directly determine the velocity-space sensitivity of a given part of a measured time-of-flight spectrum from TOFOR
On the mechanisms governing gas penetration into a tokamak plasma during a massive gas injection
A new 1D radial fluid code, IMAGINE, is used to simulate the penetration of gas into a tokamak plasma during a massive gas injection (MGI). The main result is that the gas is in general strongly braked as it reaches the plasma, due to mechanisms related to charge exchange and (to a smaller extent) recombination. As a result, only a fraction of the gas penetrates into the plasma. Also, a shock wave is created in the gas which propagates away from the plasma, braking and compressing the incoming gas. Simulation results are quantitatively consistent, at least in terms of orders of magnitude, with experimental data for a D 2 MGI into a JET Ohmic plasma. Simulations of MGI into the background plasma surrounding a runaway electron beam show that if the background electron density is too high, the gas may not penetrate, suggesting a possible explanation for the recent results of Reux et al in JET (2015 Nucl. Fusion 55 093013)
Ventricular volume expansion in presymptomatic genetic frontotemporal dementia
Objective: To characterize the time course of ventricular volume expansion in genetic frontotemporal dementia (FTD) and identify the onset time and rates of ventricular expansion in presymptomatic FTD mutation carriers.
Methods: Participants included patients with a mutation in MAPT, PGRN, or C9orf72, or first-degree relatives of mutation carriers from the GENFI study with MRI scans at study baseline and at 1 year follow-up. Ventricular volumes were obtained from MRI scans using FreeSurfer, with manual editing of segmentation and comparison to fully automated segmentation to establish reliability. Linear mixed models were used to identify differences in ventricular volume and in expansion rates as a function of time to expected disease onset between presymptomatic carriers and noncarriers.
Results: A total of 123 participants met the inclusion criteria and were included in the analysis (18 symptomatic carriers, 46 presymptomatic mutation carriers, and 56 noncarriers). Ventricular volume differences were observed 4 years prior to symptom disease onset for presymptomatic carriers compared to noncarriers. Annualized rates of ventricular volume expansion were greater in presymptomatic carriers relative to noncarriers. Importantly, time-intensive manually edited and fully automated ventricular volume resulted in similar findings.
Conclusions: Ventricular volume differences are detectable in presymptomatic genetic FTD. Concordance of results from time-intensive manual editing and fully automatic segmentation approaches support its value as a measure of disease onset and progression in future studies in both presymptomatic and symptomatic genetic FTD
Neuronal pentraxin 2: a synapse-derived CSF biomarker in genetic frontotemporal dementia
Introduction Synapse dysfunction is emerging as an early pathological event in frontotemporal dementia (FTD), however biomarkers are lacking. We aimed to investigate the value of cerebrospinal fluid (CSF) neuronal pentraxins (NPTXs), a family of proteins involved in homeostatic synapse plasticity, as novel biomarkers in genetic FTD.Methods We included 106 presymptomatic and 54 symptomatic carriers of a pathogenic mutation in GRN, C9orf72 or MAPT, and 70 healthy non-carriers participating in the Genetic Frontotemporal dementia Initiative (GENFI), all of whom had at least one CSF sample. We measured CSF concentrations of NPTX2 using an in-house ELISA, and NPTX1 and NPTX receptor (NPTXR) by Western blot. We correlated NPTX2 with corresponding clinical and neuroimaging datasets as well as with CSF neurofilament light chain (NfL) using linear regression analyses.Results Symptomatic mutation carriers had lower NPTX2 concentrations (median 643pg/mL, IQR (301-872)) than presymptomatic carriers (1003pg/mL (624-1358), p<0.001) and non-carriers (990pg/mL (597-1373), p<0.001) (corrected for age). Similar results were found for NPTX1 and NPTXR. Among mutation carriers, NPTX2 concentration correlated with several clinical disease severity measures, NfL and grey matter volume of the frontal, temporal and parietal lobes, insula and whole brain. NPTX2 predicted subsequent decline in phonemic verbal fluency and Clinical Dementia Rating scale plus FTD modules. In longitudinal CSF samples, available in 13 subjects, NPTX2 decreased around symptom onset and in the symptomatic stage.Discussion We conclude that NPTX2 is a promising synapse-derived disease progression biomarker in genetic FTD.Neuro Imaging Researc
- …
