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Summary
Background Frontotemporal dementia is a highly heritable neurodegenerative disorder. In about a third of patients, 
the disease is caused by autosomal dominant genetic mutations usually in one of three genes: progranulin (GRN), 
microtubule-associated protein tau (MAPT), or chromosome 9 open reading frame 72 (C9orf72). Findings from 
studies of other genetic dementias have shown neuroimaging and cognitive changes before symptoms onset, and we 
aimed to identify whether such changes could be shown in frontotemporal dementia.

Methods We recruited participants to this multicentre study who either were known carriers of a pathogenic mutation 
in GRN, MAPT, or C9orf72, or were at risk of carrying a mutation because a fi rst-degree relative was a known 
symptomatic carrier. We calculated time to expected onset as the diff erence between age at assessment and mean age 
at onset within the family. Participants underwent a standardised clinical assessment and neuropsychological battery. 
We did MRI and generated cortical and subcortical volumes using a parcellation of the volumetric T1-weighted scan. 
We used linear mixed-eff ects models to examine whether the association of neuropsychology and imaging measures 
with time to expected onset of symptoms diff ered between mutation carriers and non-carriers.

Findings Between Jan 30, 2012, and Sept 15, 2013, we recruited participants from 11 research sites in the UK, Italy, 
the Netherlands, Sweden, and Canada. We analysed data from 220 participants: 118 mutation carriers (40 symptomatic 
and 78 asymptomatic) and 102 non-carriers. For neuropsychology measures, we noted the earliest signifi cant 
diff erences between mutation carriers and non-carriers 5 years before expected onset, when diff erences were 
signifi cant for all measures except for tests of immediate recall and verbal fl uency. We noted the largest Z score 
diff erences between carriers and non-carriers 5 years before expected onset in tests of naming (Boston Naming Test 
–0·7; SE 0·3) and executive function (Trail Making Test Part B, Digit Span backwards, and Digit Symbol Task, all 
–0·5, SE 0·2). For imaging measures, we noted diff erences earliest for the insula (at 10 years before expected 
symptom onset, mean volume as a percentage of total intracranial volume was 0·80% in mutation carriers and 
0·84% in non-carriers; diff erence –0·04, SE 0·02) followed by the temporal lobe (at 10 years before expected 
symptom onset, mean volume as a percentage of total intracranial volume 8·1% in mutation carriers and 8·3% in 
non-carriers; diff erence –0·2, SE 0·1).

Interpretation Structural imaging and cognitive changes can be identifi ed 5–10 years before expected onset of 
symptoms in asymptomatic adults at risk of genetic frontotemporal dementia. These fi ndings could help to defi ne 
biomarkers that can stage presymptomatic disease and track disease progression, which will be important for future 
therapeutic trials.
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Introduction
Frontotemporal dementia is a neurodegenerative disorder 
characterised by focal neuronal loss in the frontal and 
temporal lobes.1 It is a common cause of early-onset 

dementia, but can also present in old age and has an 
estimated prevalence of between 15 and 22 per 100 000 
individuals in the population.2 It presents clinically with 
either behavioural symptoms (behavioural variant 
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frontotemporal dementia) or language disturbance 
(primary progressive aphasia), but patients can also 
develop symptoms of motor neuron disease, progressive 
supranuclear palsy, or corticobasal syndrome.1 It is highly 
heritable, with an autosomal dominant family history 
reported in around a third of people with the disease.3 
Mutations in three genes are proven major causes of 
genetic frontotemporal dementia: microtubule-associated 
protein tau (MAPT), progranulin (GRN), and 
chromosome 9 open reading frame 72 (C9orf72).4 
Frequencies of mutations of these three genes vary by 
geography, but together they account for 10–20% of all 
cases of frontotemporal dementia.4

The study of autosomal dominant frontotemporal 
dementia in its presymptomatic period provides a 
window into the earliest stages of the disease process.5 
Evidence from familial Alzheimer’s disease and 
Huntington’s disease shows that changes in some 
biomarkers occur many years before symptom onset,6–8 
suggesting that the ideal time to treat neurodegenerative 
disease could be before clinical presentation, at a point 
when the minimum of irreversible neuronal loss has 
occurred and cognitive function is still preserved. To 
optimise therapeutic opportunities, biomarkers of 
frontotemporal dementia are therefore needed that 
signify disease onset and can measure changes in disease 
trajectory in the presymptomatic period. Furthermore, 
biomarkers that allow accurate staging of the disease 
process will be important to identify individuals most 
suitable for particular trials, to reduce heterogeneity, and 
increase the statistical power.

Few studies of mutation carriers at risk of fronto-
temporal dementia have been done, and investigators of 
these studies have reported inconsistent fi ndings 
(appendix).9–26 Although fi ndings from some studies have 
shown presymptomatic changes in neuropsychometric 
testing near to disease onset,9,11,15–17,22 others have not 
shown any changes.13,19,21,23–25 Similarly, fi ndings from a 
few case studies9,11,17 and small case series12,13,18 have shown 
evidence of grey matter volume loss before symptoms 
onset with structural MRI, but other studies have 
reported no abnormalities.19–22 In this study, we compared 
clinical, behavioural, and structural imaging measures 
between mutation carriers and non-carriers in a large 
international cohort of families with autosomal dominant 
frontotemporal dementia. Our hypothesis was that we 
would see presymptomatic changes in structural imaging 
measures initially and then behavioural and cognitive 
measures before onset of symptoms.

Methods
Participants
The Genetic Frontotemporal dementia Initiative 
(GENFI) consists of 11 research sites, in the UK, Italy, 
the Netherlands, Sweden, and Canada. We recruited 
participants who were either known carriers of a 
pathogenic mutation in MAPT, GRN, or C9orf72, or at 

risk of carrying a mutation because a fi rst-degree 
relative was a known symptomatic carrier. We 
genotyped all participants at their local site, with a 
pathogenic expansion in C9orf72 being defi ned as the 
presence of greater than 30 repeats. We enrolled 
220 participants between Jan 30, 2012, and Sept 15, 
2013. Local ethics committees at each site approved the 
study and all participants provided written informed 
consent at enrolment.

Procedures
Participants underwent a standardised clinical assessment 
consisting of a medical history, family history, and 
physical examination. We based symptomatic status on 
this assessment, which included a collateral history from 
a family member or close friend. We measured functional 
status using the Frontotemporal Dementia Rating Scale27 
and assessed behavioural symptoms using the Cambridge 
Behavioural Inventory Revised version (CBI-R).28 Patients 
underwent a neuropsychological battery consisting of 
tests from the Uniform Data Set:29 the Logical Memory 
subtest of the Wechsler Memory Scale-Revised with 
Immediate and Delayed Recall scores, Digit Span 
forwards and backwards from the Wechsler Memory 
Scale-Revised, a Digit Symbol Task, Parts A and B of the 
Trail Making Test, the short version of the Boston Naming 
Test, and Category Fluency (animals). We also tested 
Letter Fluency and did the Wechsler Abbreviated Scale of 
Intelligence Block Design task, and the Mini-Mental State 
Examination (MMSE). For each test, apart from the 
MMSE and CBI-R, we calculated Z scores based on 
language-specifi c norms. Most at-risk participants 
(158 [88%] of 180) had not undergone presymptomatic 
genetic testing and were therefore not aware of their 
mutation status, and for these participants the clinicians 
and neuropsychologists who did the assessments were 
masked to mutation status.

We did volumetric T1-weighted MRI on 3T and 1·5T 
scanners at sites where 3T scanning was not available. 
We designed scan protocols at the outset of the study to 
match across scanners as much as possible. For the 
volumetric analysis, we did a cortical parcellation using a 
multiatlas segmentation propagation approach following 
the brainCOLOR protocol,30,31 combining regions of 
interest to calculate grey matter volumes of the entire 
cortex, separated into the frontal, temporal, parietal, 
occipital, cingulate, and insula cortices. We also did a 
subcortical parcellation using the Neuromorphometrics 
protocol32,33 for the hippocampus, amygdala, striatum, 
and thalamus, and a parcellation of the cerebellum using 
the Diedrichsen cerebellar atlas,33,34 producing a measure 
for the entire cerebellum by combining regions of 
interest. We measured whole-brain volumes using a 
semi-automated segmentation method.35 We expressed 
all measures as a percentage of total intracranial volume 
(measured with SPM12 with a combination of grey 
matter, white matter, and CSF segmentations). In view of 
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previous evidence for asymmetrical atrophy in GRN 
mutation carriers compared with MAPT and C9orf72 
carriers,4,5 we also assessed diff erences between left and 
right hemisphere volumes using a laterality index, 
calculated as the absolute diff erence between left and 
right cortical volumes divided by total cortical volume.

Findings from individual case series of individuals 
with dementia with a known genetic cause suggest that 
variability of age at symptom onset exists within families. 
However, authors of a large study of familial Alzheimer’s 
disease36 suggest that a strong relation exists between 
individual age at symptoms onset and both parental age 
at onset and mean age at onset within the family. To our 
knowledge, no similar studies have been done in 
frontotemporal dementia. We therefore did an initial 
analysis on the basis of the symptomatic carriers within 
our cohort, investigating the relation between their age 
at symptoms onset and parental age at onset, their age at 
onset and mean age at onset for other members of the 
same family, and their age at onset and median age at 
onset for other members of the same family (excluding 
the symptomatic individual from mean and median 
calculations). Parental age at onset did not show a 
signifi cant correlation with age at symptoms onset of the 
symptomatic carriers (Pearson correlation coeffi  cient 
0·39; p=0·0685), but we found both mean and median 
ages at onset within the family to be signifi cantly 
correlated with the symptomatic carriers’ age at onset 
(Pearson correlation coeffi  cient 0·53, p=0·0019 for the 
mean and 0·50, p=0·0036 for the median). Furthermore, 
in addition to being correlated with mean age of onset 
within their families, age at symptoms onset of sympto-
matic carriers did not signifi cantly diff er from mean age 
at onset within their families (p=0·3216 Wilcoxon signed 

rank). On the basis of this analysis, we decided to use 
mean familial age at onset to estimate time to expected 
symptom onset—ie, someone aged 50 years old at the 
time of assessment with a mean age at onset of 55 years 
old in their family would be given an expected time from 
symptoms onset of –5 years. Data were available for this 
calculation from one family member in 35 families, 
from two in 15 families, from three in ten families, from 
four in four families, from fi ve in fi ve families, from six 
in two families, and from seven in two families; 12, 16, 
and 30 family members were available in a further 
three families.

Non-carriers 
(n=102)

Mutation carriers 
(n=118)

Male 60 (59%) 57 (48%)

Mutated gene

MAPT 18 (18%) 26 (22%)

GRN 60 (59%) 58 (49%)

C9orf72 24 (24%) 34 (29%)

Clinical status

Asymptomatic 102 (100%) 78 (66%)

Symptomatic 0 40 (34%)

Right-handed 94 (92%) 106 (90%)

Age (years) 49·2 (36·3–61·7) 53·3 (41·4–62·7)

Education (years) 13 (11–16) 13 (10–16)

Years from expected onset

–20 or longer 32 (31%) 21 (18%)

–20 up to –10 18 (18%) 21 (18%)

–10 up to 0 23 (23%) 24 (20%)

0 and beyond expected onset 29 (28%) 52 (44%)

Data are n (%) or median (IQR).

Table 1: Characteristics of study participants

–25 years –20 years –15 years –10 years –5 years 0 years 5 years 10 years

Behavioural 

Cambridge Behavioural Inventory—Revised (/180)

Non-carriers 1·9 4·6 7·6 10·6 13·2 14·9 15·4 14·2

Carriers 0·2 4·3 9·6 16·2 24·0 33·1 43·5 55·1

Diff erence –1·7 –0·3 2·0 5·5 10·8 18·2 28·1 40·9

SE 2·8 2·2 2·7 4·0 4·9 5·3 5·8 8·7

p value 0·5611 0·8867 0·4748 0·1620 0·0269 0·0005 <0·0001 <0·0001

Cognitive

Mini Mental State Examination (/30)

Non-carriers 29·5 29·2 28·9 28·6 28·4 28·3 28·3 28·2

Carriers 30·3 29·6 28·8 28·0 27·1 26·1 25·0 23·9

Diff erence 0·7 0·4 <0·1 –0·6 –1·4 –2·2 –3·2 –4·4

SE 0·3 0·3 0·3 0·4 0·5 0·7 0·9 1·3

p value 0·0221 0·1683 0·9303 0·0922 0·0045 0·0008 0·0006 0·0007

Neuropsychological (Z score)

Logical Memory—Immediate Recall

Non-carriers 0·4 0·2 0·1 <0·1 –0·1 –0·2 –0·3 –0·4

Carriers 0·4 0·3 0·1 –0·1 –0·4 –0·8 –1·3 –1·9

Diff erence <0·1 0·1 <0·1 –0·1 –0·3 –0·6 –1·0 –1·5

SE 0·2 0·2 0·2 0·2 0·2 0·2 0·2 0·3

p value 0·8948 0·7183 0·8779 0·6136 0·0863 0·0005 <0·0001 <0·0001

Logical Memory—Delayed Recall

Non-carriers 0·3 0·2 0·1 <0·1 –0·1 –0·2 –0·3 –0·5

Carriers 0·2 0·2 <0·1 –0·2 –0·5 –0·9 –1·3 –1·8

Diff erence –0·1 –0·1 –0·1 –0·3 –0·4 –0·7 –1·0 –1·4

SE 0·2 0·2 0·2 0·2 0·2 0·2 0·2 0·3

p value 0·6463 0·6767 0·4849 0·1696 0·0105 <0·0001 <0·0001 <0·0001

Digit Span forwards

Non-carriers 0·1 0·1 0·1 <0·1 <0·1 –0·1 –0·1 –0·2

Carriers 0·5 0·3 0·1 –0·2 –0·4 –0·7 –1·0 –1·3

Diff erence 0·3 0·2 <0·1 –0·2 –0·4 –0·7 –0·9 –1·1

SE 0·2 0·2 0·2 0·2 0·2 0·2 0·2 0·3

p value 0·1479 0·4366 0·9235 0·2847 0·0253 0·0005 0·0001 0·0003

Digit Span backwards

Non-carriers 0·1 0·1 <0·1 <0·1 –0·1 –0·1 –0·2 –0·2

Carriers 0·1 <0·1 –0·2 –0·4 –0·6 –0·8 –1·1 –1·4

Diff erence –0·1 –0·1 –0·2 –0·3 –0·5 –0·7 –0·9 –1·2

SE 0·2 0·2 0·2 0·2 0·2 0·2 0·2 0·3

p value 0·8098 0·5866 0·3136 0·0933 0·0079 0·0001 <0·0001 0·0001

(Table 2 continues on next page)
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Statistical analysis
We used linear mixed-eff ects models to examine whether 
diff erences existed between non-carriers and mutation 
carriers in the association between each clinical, 
behavioural, or structural imaging measure and the time 
to expected onset of symptoms (we combined all genes 

because of low numbers in each individual genetic 
group). This modelling framework allows estimation of 
fi xed and random eff ects of predictor variables, including 
the intercept. Fixed eff ects represent non-random 
sources of variation, where the predictor variable has the 
same relation with the outcome in all observations. 
Random eff ects estimate the variance in the eff ect of a 
predictor between diff erent clusters in the data and this 
estimation allows for correlation in the outcome between 
members of the same cluster.37,38

For analysis of each measure, a random intercept for 
family allowed values of the marker to be correlated 
between family members. The fi xed eff ect predictor 
variables of interest were mutation carrier status, time to 
expected onset, and terms for the interaction between 
mutation carrier status and time to expected onset. We 
expected a non-linear change in each measure over time, 
so models also included a quadratic term for time to 
expected onset and the interaction between this term and 
mutation carrier status. We included a more complex 
cubic relation association between the measure and time 
to expected onset only when signifi cant (p<0·05) 
evidence existed that addition of a cubic term and the 
interaction between the cubic term and mutation carrier 
status improved model fi t. An example of the mixed 
eff ect model is given in the appendix for analysis of 
whole-brain volume to show the modelling framework 
that we used for analysis.

We also did exploratory analyses to assess whether 
diff erences between non-carriers and MAPT, GRN, and 
C9orf72 mutation carriers existed in the association 
between values of each measure and time to expected 
onset of symptoms. Because of the small number of 
participants in each gene group, we considered only 
linear changes in markers over time in this analysis.

We did a Wald test for each model to assess whether 
the mean value of the measure diff ered between 
mutation carriers and non-carriers. We predicted 
average values from the mixed eff ects model for each 
group and diff erences between mutation carriers and 
non-carriers every 5 years between 25 years before 
expected onset and 10 years after expected onset. All 
analyses were adjusted for study site and sex. Model 
diagnostics for both MMSE and CBI-R suggested non-
constant variance, so we used robust standard errors for 
these analyses.

In addition to the prespecifi ed analysis of markers of 
disease progression, we did a post-hoc analysis to 
examine whether diff erences existed between non-
carriers and MAPT, GRN, and C9orf72 mutation carriers 
in the association between laterality of brain volume and 
time to expected onset of symptoms. Because of strong 
skew in laterality, we used a log transformation for this 
analysis, and results are presented as ratios of laterality 
between mutation carriers and non-carriers for ease of 
interpretation. We did all analyses with STATA (version 
12.1 or later).

–25 years –20 years –15 years –10 years –5 years 0 years 5 years 10 years

(Continued from previous page)

Digit Symbol Task

Non-carriers 0·8 0·7 0·5 0·3 0·1 –0·2 –0·4 –0·7

Carriers 0·8 0·6 0·3 <0·1 –0·4 –0·9 –1·4 –1·9

Diff erence <0·1 –0·2 –0·2 –0·3 –0·5 –0·7 –0·9 –1·2

SE 0·2 0·2 0·2 0·2 0·2 0·2 0·2 0·3

p value 0·9036 0·7223 0·3033 0·0549 0·0017 <0·0001 <0·0001 <0·0001

Trail Making Test Part A

Non-carriers 0·4 0·3 0·2 <0·1 –0·2 –0·4 –0·6 –0·8

Carriers 0·6 0·4 0·1 –0·2 –0·6 –1·0 –1·5 –2·0

Diff erence 0·2 0·1 –0·1 –0·2 –0·4 –0·6 –0·9 –1·2

SE 0·2 0·2 0·2 0·2 0·2 0·2 0·2 0·3

p value 0·4662 0·7470 0·7716 0·2832 0·0355 0·0012 0·0002 0·0006

Trail Making Test Part B

Non-carriers 0·6 0·4 0·3 0·2 <0·1 –0·2 –0·3 –0·5

Carriers 0·9 0·7 0·4 <0·1 –0·5 –1·0 –1·7 –2·5

Diff erence 0·3 0·2 0·1 –0·2 –0·5 –0·9 –1·4 –1·9

SE 0·2 0·2 0·2 0·2 0·2 0·2 0·2 0·3

p value 0·1730 0·2639 0·7317 0·3799 0·0072 <0·0001 <0·0001 <0·0001

Letter Fluency

Non-carriers 0·1 –0·1 –0·2 –0·3 –0·4 –0·5 –0·6 –0·6

Carriers 0·2 0·2 <0·1 –0·3 –0·6 –1·1 –1·7 –2·4

Diff erence 0·1 0·2 0·2 0·1 –0·2 –0·6 –1·1 –1·8

SE 0·2 0·2 0·2 0·2 0·2 0·2 0·2 0·3

p value 0·6629 0·3280 0·3592 0·7952 0·2746 0·0015 <0·0001 <0·0001

Category Fluency

Non-carriers 0·5 0·4 0·2 0·1 –0·1 –0·3 –0·4 –0·6

Carriers 0·6 0·5 0·3 <0·1 –0·4 –0·8 –1·3 –2·0

Diff erence 0·1 0·1 0·1 –0·1 –0·3 –0·5 –0·9 –1·4

SE 0·2 0·2 0·2 0·2 0·2 0·2 0·2 0·3

p value 0·6632 0·4945 0·6544 0·7932 0·1226 0·0007 <0·0001 <0·0001

Boston Naming Test

Non-carriers <0·1 –0·1 –0·2 –0·3 –0·3 –0·3 –0·3 –0·3

Carriers 0·4 0·2 –0·2 –0·6 –1·0 –1·6 –2·2 –2·9

Diff erence 0·4 0·3 0·1 –0·3 –0·7 –1·2 –1·9 –2·6

SE 0·3 0·3 0·3 0·3 0·3 0·2 0·3 0·4

p value 0·1763 0·2871 0·7965 0·3202 0·0047 <0·0001 <0·0001 <0·0001

Block Design

Non-carriers 0·4 0·3 0·2 <0·1 –0·2 –0·3 –0·5 –0·7

Carriers 0·7 0·5 0·2 –0·1 –0·5 –1·0 –1·4 –2·0

Diff erence 0·3 0·2 <0·1 –0·2 –0·4 –0·6 –0·9 –1·3

SE 0·2 0·2 0·2 0·2 0·2 0·2 0·2 0·3

p value 0·2220 0·3911 0·8839 0·4029 0·0284 0·0001 <0·0001 <0·0001

Diff erences calculated from unrounded values.

Table 2: Behavioural and neuropsychological estimates in mutation carriers and non-carriers, by 
estimated time from expected symptoms onset
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Role of the funding source
The funders of the study had no role in study design, 
data collection, data analysis, data interpretation, or 
writing of the report. All authors had full access to all the 
data in the study except for the results of genetic mutation 
screening in presymptomatic participants. Only JMN 
and DMC had access to all of the genetic results to avoid 
risk of disclosure of genetic status to at-risk participants 
who were unaware of whether they carried a mutation. 
All authors had fi nal responsibility for the decision to 
submit for publication.

Results
We analysed data from 220 participants, consisting of 
118 mutation carriers and 102 non-carriers (table 1). Of 
the 118 mutation carriers, 40 were symptomatic (11 with 
MAPT, 13 with GRN, and 16 with C9orf72 mutations) and 
78 were asymptomatic (15 with MAPT, 45 with GRN, and 
18 with C9orf72 mutations). Of the 102 non-carriers, 
18 were from families with MAPT mutations, 60 were 
from families with GRN mutations, and 24 were from 
families with C9orf72 mutations.

Participants came from 76 families (17 with MAPT, 
32 with GRN, and 27 with C9orf72 mutations), with the 
mean age at symptom onset across all individuals being 
56·9 (SD 8·4) years. Mean age at symptom onset was 
49·5 (5·6) years in the MAPT families, 57·8 (8·7) years in 
the GRN families, and 60·6 (6·7) years in the C9orf72 
families (appendix). We noted ten diff erent MAPT 
mutations in the 17 families: Pro301Leu, intronic 10+16, 
Gly272Val, Val363Ile, Arg406Trp, Val337Met, Ser320Phe, 
Pro301Ser, Leu315Arg, and Gln351Arg (in order of 
number of participants in study). We found 13 diff erent 
GRN mutations in the 32 families: Ser82fs, Thr272fs, 
Gln125X, Gln249X, Arg493X, Gln130fs, Cys416fs, Val411fs, 
Trp386X, Gly35fs, Cys31fs, Cys474fs, and Asp22fs.

In the symptomatic cohort, most participants had a 
diagnosis of behavioural variant frontotemporal dem-
entia (meeting the Rascovsky diagnostic criteria),39 except 
for six participants with GRN mutations who had 
diagnoses of the non-fl uent variant of primary 
progressive aphasia (Gorno-Tempini diagnostic criteria)40 
and four participants with C9orf72 mutations (one with 
the non-fl uent variant of primary progressive aphasia, 
two with frontotemporal dementia with motor neuron 
disease, and one with a dementia syndrome not otherwise 
specifi ed). Functionally, one participant (with a MAPT 
mutation) in the symptomatic cohort was very mildly 
aff ected (according to the Frontotemporal Dementia 
Rating Scale), three (one GRN and two C9orf72) were 
mildly aff ected, 16 (four MAPT, fi ve GRN, and seven 
C9orf72) were moderately aff ected, 13 (four MAPT, four 
GRN, and fi ve C9orf72) were severely aff ected, and seven 
(two MAPT, three GRN, and two C9orf72) were very 
severely aff ected.

MMSE, CBI-R, and all neuropsychology measures 
showed signifi cant mean diff erences between mutation 

–25 years –20 years –15 years –10 years –5 years 0 years 5 years 10 years

Whole-brain volume (% of TIV)

Whole brain

Non-carriers 86·1% 84·8% 83·7% 82·6% 81·6% 80·7% 79·8% 79·0%

Carriers 87·0% 85·7% 84·0% 82·1% 79·8% 77·2% 74·3% 71·1%

Diff erence 0·9% 0·8% 0·3% –0·5% –1·8% –3·5% –5·5% –8·0%

SE 0·9 0·8 0·8 0·8 0·7 0·7 0·9 1·2

p value 0·3184 0·3198 0·6738 0·5004 0·0157 <0·0001 <0·0001 <0·0001

Cortical volume (% of TIV)

Frontal lobe

Non-carriers 12·9% 12·7% 12·4% 12·2% 12·0% 11·8% 11·7% 11·5%

Carriers 13·1% 12·8% 12·4% 12·0% 11·5% 11·1% 10·5% 10·0%

Diff erence 0·2% 0·1% <0·1% –0·2% –0·5% –0·8% –1·1% –1·5%

SE 0·2 0·2 0·2 0·2 0·2 0·2 0·2 0·3

p value 0·3208 0·5261 0·8689 0·1766 0·0023 <0·0001 <0·0001 <0·0001

Temporal lobe

Non-carriers 8·8% 8·6% 8·5% 8·3% 8·2% 8·1% 8·0% 7·9%

Carriers 8·7% 8·6% 8·4% 8·1% 7·9% 7·6% 7·3% 6·9%

Diff erence <0·1% <0·1% –0·1% –0·2% –0·3% –0·5% –0·7% 1·0%

SE 0·1 0·1 0·1 0·1 0·1 0·1 0·1 0·2

p value 0·8944 0·7049 0·3287 0·0483 0·0005 <0·0001 <0·0001 <0·0001

Parietal lobe

Non-carriers 7·1% 7·0% 6·8% 6·7% 6·6% 6·4% 6·4% 6·3%

Carriers 7·0% 6·9% 6·7% 6·6% 6·4% 6·2% 5·9% 5·6%

Diff erence –0·1% –0·1% –0·1% –0·1% –0·2% –0·3% –0·5% –0·6%

SE 0·1 0·1 0·1 0·1 0·1 0·1 0·1 0·2

p value 0·2818 0·4546 0·4800 0·2820 0·0510 0·0010 <0·0001 <0·0001

Occipital lobe

Non-carriers 5·6% 5·6% 5·5% 5·4% 5·4% 5·3% 5·2% 5·1%

Carriers 5·6% 5·5% 5·5% 5·4% 5·3% 5·2% 5·0% 4·9%

Diff erence –0·1% –0·1% <0·1% –0·1% –0·1% –0·1% –0·2% –0·3%

SE 0·1 0·1 0·1 0·1 0·1 0·1 0·1 0·1

p value 0·4022 0·5072 0·5377 0·4311 0·2181 0·0554 0·0166 0·0175

Insula

Non-carriers 0·86% 0·85% 0·85% 0·84% 0·83% 0·82% 0·80% 0·79%

Carriers 0·85% 0·84% 0·82% 0·80% 0·77% 0·74% 0·71% 0·67%

Diff erence –0·01% –0·02% –0·03% –0·04% –0·05% –0·07% –0·10% –0·12%

SE 0·02 0·02 0·02 0·02 0·02 0·01 0·02 0·02

p value 0·5379 0·2992 0·1028 0·0131 0·0002 <0·0001 <0·0001 <0·0001

Cingulate

Non-carriers 1·95% 1·91% 1·89% 1·86% 1·84% 1·82% 1·81% 1·79%

Carriers 1·98% 1·95% 1·91% 1·86% 1·80% 1·74% 1·67% 1·59%

Diff erence 0·04% 0·03% 0·02% <0·01% –0·04% –0·08% –0·14% –0·20%

SE 0·04 0·03 0·03 0·03 0·03 0·03 0·03 0·05

p value 0·3386 0·3246 0·5478 0·8934 0·1935 0·0036 <0·0001 <0·0001

Subcortical volume (% of TIV)

Hippocampus

Non-carriers 0·70% 0·69% 0·68% 0·68% 0·67% 0·66% 0·65% 0·64%

Carriers 0·69% 0·69% 0·68% 0·66% 0·64% 0·62% 0·59% 0·55%

Diff erence –0·01% –0·01% –0·01% –0·01% –0·02% –0·04% –0·06% –0·09%

SE 0·01 0·01 0·01 0·01 0·01 0·01 0·01 0·02

p value 0·4421 0·6667 0·6464 0·3408 0·0441 0·0003 <0·0001 <0·0001

(Table 3 continues on next page)
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carriers as a whole group and non-carriers (p≤0·0028 for 
all markers). MMSE, CBI-R, and all neuropsychology 
measures except the Logical Memory Immediate Recall 
and verbal fl uency tasks showed signifi cant mean 
diff erences between mutation carriers as a whole group 
and non-carriers 5 years before expected onset 
(table 2 and appendix). We noted no signifi cant diff erences 
at timepoints earlier than 5 years before expected onset. 
The earliest point at which the Logical Memory 
Immediate Recall and verbal fl uency tasks showed 
diff erences between mutation carriers and non-carriers 
was at the time of expected onset. In the exploratory 
analysis of individual genetic groups, the behavioural and 
neuropsychological tests that showed diff erences between 
mutation carriers and non-carriers at the earliest times 
before expected onset were diff erent in each genetic 
group: the Boston Naming Test and the CBI-R for the 
MAPT group, the Digit Span backwards for the GRN 
group, and the CBI-R in the C9orf72 group (appendix).

We did volumetric T1-weighted MRI in 
212 participants (eight were unable to have a scan 
because of either contraindications to MRI scanning or 
claustrophobia). A further ten scans did not pass an 

initial quality control process, usually owing to 
excessive motion during the scan. We therefore used 
202 scans for analysis (175 from 3T scanners 
[55 Siemens, 99 Philips, and 21 General Electric 
scanners] and 27 from 1·5T scanners [19 Siemens and 
8 General Electric scanners]). 93 scans were from non-
carriers and 109 from mutation carriers (24 MAPT, 52 
GRN, and 33 C9orf72). Whole-brain volume showed a 
signifi cant diff erence between mutation carriers as a 
whole group and non-carriers (p<0·0001), with strong 
evidence for a diff erence in all cortical and subcortical 
volumes (p≤0·0030), except for the occipital lobe, 
which was not signifi cant (p=0·0598). The cerebellum 
had a less signifi cant diff erence than the cortical and 
subcortical volumes (p=0·0211). We noted diff erences 
in group means between mutation carriers and non-
carriers at the earliest timepoint for the insula (10 years 
before expected symptom onset) followed by the 
temporal lobe (also 10 years before expected symptom 
onset, but with a less signifi cant diff erence; table 3 and 
fi gure). We noted diff erences in the frontal lobe, all 
subcortical volumes, and whole-brain volume between 
carriers and non-carriers at 5 years before expected 
onset, whereas we noted diff erences in the parietal 
lobe and cingulate only just before expected time of 
onset (table 3, fi gure, and appendix). Although we 
noted only weak evidence for a diff erence between 
mutation carriers and non-carriers, the results suggest 
that signifi cant diff erences might exist in the occipital 
lobe at 5 years after symptoms onset and in the 
cerebellum at 10 years after symptoms onset. 

When we analysed the individual genetic groups 
separately, we noted a diff erent ordering of cortical and 
subcortical involvement in each group (appendix): in the 
MAPT group, we noted diff erences between mutation 
carriers and non-carriers in the hippocampus and amygdala 
at 15 years before expected onset, followed by the temporal 
lobe at 10 years before expected onset, and the insula at 
5 years before expected onset; in the GRN group, we noted 
diff erences between carriers and non-carriers in the insula 
at 15 years before expected onset, then in the temporal and 
parietal lobes at 10 years before expected onset, with the 
earliest subcortical area aff ected being the striatum at 5 years 
before expected onset; and in the C9orf72 group, subcortical 
areas including the thalamus, the insula, and posterior 
cortical areas diff ered between carriers and controls at 
25 years before expected onset, followed by the frontal and 
temporal lobes at 20 years before expected onset. We noted 
signifi cant diff erences in the cerebellum presymptomatically 
in the C9orf72 group at 10 years before expected onset. 
Examination of the laterality index showed evidence for 
asymmetry between left and right cortical volumes in the 
GRN mutation carriers (p=0·0001 vs non-carriers), but not 
in the MAPT carriers (p=0·3283 vs non-carriers) or C9orf72 
carriers (p=0·2018 vs non-carriers). GRN mutation carriers 
showed signifi cantly greater asymmetry than non-carriers at 
5 years before expected onset (appendix). 

–25 years –20 years –15 years –10 years –5 years 0 years 5 years 10 years

(Continued from previous page)

Amygdala

Non-carriers 0·14% 0·14% 0·14% 0·14% 0·14% 0·14% 0·14% 0·14%

Carriers 0·14% 0·14% 0·14% 0·14% 0·13% 0·13% 0·12% 0·12%

Diff erence <0·01% <0·01% <0·01% <0·01% –0·01% –0·01% –0·01% –0·02%

SE 0·003 0·003 0·003 0·003 0·003 0·003 0·003 0·005

p value 0·7016 0·7182 0·5451 0·2397 0·0302 0·0005 <0·0001 <0·0001

Striatum

Non-carriers 1·28% 1·26% 1·25% 1·24% 1·23% 1·23% 1·22% 1·22%

Carriers 1·29% 1·26% 1·23% 1·21% 1·18% 1·16% 1·13% 1·11%

Diff erence 0·01% <0·01% –0·01% –0·03% –0·05% –0·07% –0·09% –0·11%

SE 0·03 0·02 0·02 0·02 0·02 0·02 0·02 0·03

p value 0·6840 0·9889 0·5552 0·1928 0·0255 0·0010 0·0002 0·0008

Thalamus

Non-carriers 0·95% 0·93% 0·92% 0·90% 0·89% 0·88% 0·87% 0·85%

Carriers 0·94% 0·92% 0·91% 0·89% 0·86% 0·83% 0·80% 0·76%

Diff erence –0·02% –0·01% –0·01% –0·02% –0·03% –0·04% –0·07% –0·09%

SE 0·02 0·02 0·02 0·01 0·01 0·01 0·02 0·02

p value 0·3630 0·4977 0·4688 0·2472 0·0385 0·0007 <0·0001 <0·0001

Cerebellar volume (% of TIV)

Cerebellar

Non-carriers 7·6% 7·5% 7·4% 7·3% 7·2% 7·1% 7·1% 7·0%

Carriers 7·6% 7·6% 7·5% 7·4% 7·3% 7·1% 6·9% 6·6%

Diff erence 0·1% 0·1% 0·2% 0·1% 0·1% <0·1% –0·2% –0·4%

SE 0·1 0·1 0·1 0·1 0·1 0·1 0·1 0·1

p value 0·5840 0·1865 0·1070 0·1478 0·4216 0·6560 0·0604 0·0071

Diff erences calculated from unrounded values. TIV=total intracranial volume. 

 Table 3: Imaging estimates in mutation carriers and non-carriers, by estimated time from expected 
symptoms onset
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Discussion
We have shown that imaging changes can be identifi ed at 
least 10 years before expected onset of symptoms in 
genetic frontotemporal dementia. Structural neuro-
imaging identifi es a sequence of change in atrophy 
through cortical and subcortical regions, with the insular 
and temporal cortices aff ected initially (around 10 years 
before expected symptoms onset), followed by the frontal 
cortex and subcortical areas (around 5 years before 
expected onset), parietal and cingulate cortices (around 
time of expected onset), and, lastly, the occipital cortex 
(5 years after expected onset) and cerebellum (10 years 
after expected onset). We noted that neuropsychological 
measures were fi rst diff erent between carriers and non-
carriers later than initial imaging measures, up to 5 years 
before expected symptoms onset. These fi ndings suggest 
that the disease process signifi cantly precedes onset of 
symptoms in genetic frontotemporal dementia. Whereas 
previous studies have shown inconsistent fi ndings 
(panel), the value of investigation of a large cohort of 
presymptomatic participants is confi rmed in this study, 
consistent with similar approaches previously done in 
patients with familial Alzheimer’s disease8 and patients 
with Huntington’s disease.7

The fi ndings from this study are consistent with our 
understanding of the earliest structural changes in 
frontotemporal dementia. The insula is thought to act as 
a crucial hub in many key networks that become aff ected 
(particularly the so-called salience network connecting 
the insula, frontal lobe, and anterior cingulate, and 
frontoparietal networks).25,41,42 Here, we noted that the 
insula was the fi rst cortical area to show evidence of 
atrophy in the mutation group as a whole, and was one of 
the earliest areas aff ected in the analyses of each 
individual genetic group, suggesting that it might be an 
early focus of pathology followed by connectivity-based 
spread of disease.

Our primary analysis focused on genetic fronto temporal 
dementia as a single group. The rationale for this decision 
lies in the shared clinical features and overlapping disease 
mechanisms seen in genetic frontotemporal dementia. 
However, diff erences have been shown between genetic 
subgroups in previous neuroimaging studies,43,44 and 
signatures of network disintegration with particular 
genetic proteinopathies are predicted on both empirical 
and theoretical grounds.45 Our exploratory analyses are 
consistent with and extend this previous work. In the 
MAPT group, temporal lobe and medial temporal 
structures (the hippocampus and amygdala) were aff ected 
initially, consistent with previous fi ndings suggesting that 
the disease is a temporal-predominant disorder.18,43,46 
However, this study shows that signifi cant changes can be 
seen in these areas much earlier than previously 
suggested. In the GRN group, the insula was the fi rst area 
aff ected (around 15 years before expected onset), followed 
by the temporal and parietal lobes. Consistent with 
previous neuroimaging studies of symptomatic carriers 

showing early temporal and parietal involvement in 
patients with GRN mutations,11,43,46 fi ndings from this 
study identify the insula as the key region aff ected 
signifi cantly earlier than other areas. Distinct from the 
other groups, the earliest subcortical involvement in the 
GRN group was in the striatum (around 5 years before 
expected onset), an area known to be involved in 
symptomatic GRN mutation cases, but not previously 
shown presymptomatically.47 In the C9orf72 group, the 
thalamus and more posterior cortical areas were aff ected 
early. No previous presymptomatic studies of this group 
have been done, but previous imaging analyses of 
symptomatic carriers suggest that the thalamus is a key 
area aff ected in people with C9orf72 expansions and that 
posterior areas are more involved than in the other two 
genetic groups.43,44 Similarly, the cerebellum has been 
identifi ed as an area aff ected in symptomatic C9orf72 
expansion carriers, and here we show evidence for 
presymptomatic involvement. The exploratory analysis 
suggested very early detectable structural imaging 
changes, particularly in the C9orf72 group, more than 
20 years before expected symptoms onset. The timing of 

Figure: Standardised diff erence between all mutation carriers and non-carriers in cortical grey matter 
volumetric imaging measures versus estimated years from expected symptoms onset
Individual datapoints not plotted to prevent disclosure of genetic status. The time at which the upper 95% CI for 
each curve crosses zero on the y-axis (ie, the point at which a signifi cant diff erence exists between mutation 
carriers and non-carriers) is shown on the x-axis. Individual curves with 95% CIs are shown in the appendix. 
Subcortical and cerebellar volumes are also shown in the appendix.
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presymptomatic involvement before expected symptoms 
onset might, to some extent, result from limitations of the 
simple linear association used in modelling, but this 
intriguing fi nding needs further investigation and could 
be consistent with the very slow progressive change in 
symptoms seen in some patients with C9orf72-related 
frontotemporal dementia.48–50 Another possibility is that 
some of the very early diff erences between mutation 
carriers and non-carriers in the C9orf72 group represent 
diff erences in brain volume that are, in fact, developmental 
and longstanding, with superimposed atrophy only late in 
the disease process.

A key strength of this study is its ability to show robust 
presymptomatic diff erences in clinical and imaging 
biomarkers in genetic frontotemporal dementia. 
However, we analysed only cross-sectional diff erences 
between carriers and controls at diff erent times from  
expected symptoms onset. Whether the apparent 
progression of atrophy through a sequence of cortical 
and subcortical regions is followed within individuals 
remains to be shown in a longitudinal study. A further 

limitation of the study is the method used for estimation 
of age at onset in presymptomatic mutation carriers. 
Despite our initial analysis showing a signifi cant 
correlation between actual age at onset in symptomatic 
carriers and mean familial age at onset, this measure is 
imperfect, with variability in age at onset within a family 
in all frontotemporal dementia mutations. This 
variability is greater for C9orf72 and GRN mutations 
than for MAPT mutations, which could lead to greater 
error in estimated time to onset in these subtypes than 
in the MAPT subtype (and could therefore suggest that 
changes can be seen earlier than actually occur). Another 
limitation of the study is its ability to detect subtle 
neuropsychiatric or neuropsychological abnormalities. 
The behavioural and cognitive battery used in the study 
includes a series of standard validated tests, but these 
tests might not have suffi  cient sensitivity for diagnosis 
of subtle cognitive or neuropsychiatric dysfunction 
identifi ed with experimental tests.

In further studies, imaging, genetic, biochemical, and 
cognitive measures might be able to be combined to 
identify changes even earlier than noted here. Findings 
from initial studies19–25 suggest that presymptomatic 
diff erences between carriers and non-carriers of 
mutations associated with frontotemporal dementia 
might be seen with other imaging methods, such as 
diff usion tensor imaging and resting-state functional 
MRI. Findings from presymptomatic studies of 
Alzheimer’s disease8 also suggest earlier changes in ¹¹C 
Pittsburgh compound B PET and CSF measures than 
diff usion tensor imaging and resting-state functional 
MRI. Although no fl uid biomarkers have been identifi ed 
for frontotemporal dementia, tau PET scanning is now 
available51 and will be important to examine`` in this 
cohort as the GENFI study progresses. Our fi ndings 
suggest that some readily measurable markers can show 
rates of decline before symptom onset in frontotemporal 
dementia; if confi rmed in the longitudinal stages of the 
GENFI study, these measures could be suitable for use in 
clinical trials and, we hope, contribute to development of 
preventive strategies.
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Panel: Research in context

Systematic review
We searched PubMed for articles on presymptomatic studies in genetic frontotemporal 
dementia up to Nov 16, 2014, using the following terms: “frontotemporal dementia AND 
genetics” and “frontotemporal dementia AND presymptomatic”. We identifi ed one 
review article of presymptomatic studies in genetic frontotemporal dementia,5 and 18 
original research studies that had investigated neuropsychology or neuroimaging, or 
both, in presymptomatic genetic frontotemporal dementia (appendix)9–21 A few case 
studies9,11,16,17 and two other studies15,22 have shown evidence of presymptomatic 
abnormalities on neuropsychometry in asymptomatic mutation carriers, usually with 
tests of executive dysfunction. However, fi ndings from some other studies have not 
shown any abnormalities before onset.13,19,21,23–25 In two single case studies9,11 and two small 
case series12,13 of presymptomatic GRN mutation carriers, focal brain atrophy has been 
shown a few years before symptoms onset using volumetric T1 MRI, with the prefrontal 
cortex being predominantly involved, often in an asymmetric pattern. MAPT carriers have 
been studied less than GRN carriers, with a single case study17 and a small case series18 
showing presymptomatic atrophy, with hippocampal involvement predominating. We 
identifi ed no presymptomatic studies of C9orf72 mutation carriers. Some studies have 
focused on other types of MRI in GRN and MAPT carriers, particularly diff usion tensor 
imaging and resting-state functional MRI;19–26 however, Borroni and colleagues,19,21 
Whitwell and colleagues,20 and Dopper and colleagues22 also did voxel-based 
morphometry analyses using volumetric T1 imaging in their studies and did not fi nd any 
diff erences between asymptomatic carriers and controls.

Interpretation
This work is the fi rst multicentre study of presymptomatic genetic frontotemporal 
dementia and identifi es structural imaging changes around 10 years before expected 
onset, and cognitive impairment around 5 years before expected onset, when the genetic 
group is investigated as a whole. Exploratory analyses suggest that diff erent cortical and 
subcortical areas are aff ected earliest in each of the MAPT, GRN, and C9orf72 groups, and 
that structural imaging changes can be seen 15 years or more before symptoms onset. 
Our results provide an insight into the early neuroanatomical changes in genetic 
frontotemporal dementia and suggest the potential for use of structural imaging 
measures as biomarkers in future therapeutic trials.
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