27 research outputs found

    Lanthanide Complexes that Respond to Changes in Cyanide Concentration in Water

    Get PDF
    Cyanide ions are shown to interact with lanthanide complexes of phenacylDO3A derivatives in aqueous solution, giving rise to changes in the luminescence and NMR spectra. These changes are the consequence of cyanohydrin formation, which is favored by the coordination of the phenacyl carbonyl group to the lanthanide center. These complexes display minimal affinity for fluoride and can detect cyanide at concentrations less than 1 μm. By contrast, lanthanide complexes with DOTAM derivatives display no affinity for cyanide in water, but respond to changes in fluoride concentration

    Stagnation of a 'Miracle': Botswana’s Governance Record Revisited

    Full text link

    Meta-analysis of epigenome-wide association studies in neonates reveals widespread differential DNA methylation associated with birthweight

    Get PDF
    Birthweight is associated with health outcomes across the life course, DNA methylation may be an underlying mechanism. In this meta-analysis of epigenome-wide association studies of 8,825 neonates from 24 birth cohorts in the Pregnancy And Childhood Epigenetics Consortium, we find that DNA methylation in neonatal blood is associated with birthweight at 914 sites, with a difference in birthweight ranging from -183 to 178 grams per 10% increase in methylation (P-Bonferroni <1.06 x 10(-7)). In additional analyses in 7,278 participants,Peer reviewe

    Effective control of SARS-CoV-2 transmission between healthcare workers during a period of diminished community prevalence of COVID-19

    Get PDF
    Funder: Addenbrooke's Charitable Trust, Cambridge University Hospitals; FundRef: http://dx.doi.org/10.13039/501100002927Funder: National Institute for Health Research; FundRef: http://dx.doi.org/10.13039/501100000272Previously, we showed that 3% (31/1032)of asymptomatic healthcare workers (HCWs) from a large teaching hospital in Cambridge, UK, tested positive for SARS-CoV-2 in April 2020. About 15% (26/169) HCWs with symptoms of coronavirus disease 2019 (COVID-19) also tested positive for SARS-CoV-2 (Rivett et al., 2020). Here, we show that the proportion of both asymptomatic and symptomatic HCWs testing positive for SARS-CoV-2 rapidly declined to near-zero between 25th April and 24th May 2020, corresponding to a decline in patient admissions with COVID-19 during the ongoing UK ‘lockdown’. These data demonstrate how infection prevention and control measures including staff testing may help prevent hospitals from becoming independent ‘hubs’ of SARS-CoV-2 transmission, and illustrate how, with appropriate precautions, organizations in other sectors may be able to resume on-site work safely

    Kinetically Stable Lanthanide Complexes Displaying Exceptionally High Quantum Yields upon Long-Wavelength Excitation: Synthesis, Photophysical Properties, and Solution Speciation

    No full text
    We demonstrate how highly emissive, kinetically stable complexes can be prepared using the macrocyclic scaffold of DO3A bearing coordinating aryl ketones as highly effective sensitizing chromophores. In the europium complexes, high quantum yields (up to 18% in water) can be combined with long-wavelength excitation (370 nm). The behavior in solution upon variation of pH, studied by means of UV–vis absorption, emission, and NMR spectroscopies, reveals that the nature of the chromophore can give rise to pH-dependent behavior as a consequence of deprotonation adjacent to the carbonyl group. Knowledge of the molecular speciation in solution is therefore critical when assessing the luminescence properties of such complexes

    Substituent effects on fluoride binding by lanthanide complexes of DOTA-tetraamides

    Get PDF
    Fluoride binding by a series of europium and ytterbium complexes of DOTA-tetraamide ligands derived from primary, secondary and tertiary amides has been studied by NMR and luminescence spectroscopies. In all the systems studied, fluoride binding results in a change in the nature of the magnetic anisotropy at the metal centre from an easy axis, to an easy plane anisotropy. This results in reversal of the peaks in the NMR spectra, and in changes to the fine structure of the luminescence spectra. Furthermore, changes to the periphery of the binding cavity are implicated in determining the affinity constant for fluoride. There are clear differences in the entropic contribution to the free energy of activation between systems with benzylic amides and those with methylamides

    Tuning the electronics of phosphorescent, amide-functionalized, cyclometalated IrIII complexes: syntheses, structures, spectroscopy and theoretical studies

    No full text
    Iridium(III) complexes were synthesized with the general form [Ir(L16)2(bpy)]PF6 (bpy = 2,2'-bipyridine), where ligands (LH16) are based on the N-functionalization of 2-phenyl-N-aryl/alkyl-quinoline-4-carboxamides. Single crystal X-ray diffraction studies were undertaken on two complexes, which show that each adopts a distorted octahedral coordination geometry with retention of the expected trans-N, cis-C arrangement of the cyclometalated ligands. Electrochemical studies confirmed the subtle perturbing of theIrIII/IV redox couple as a function of ligand structure. Scalar relativistic DFT studies provided qualitative descriptions of the HOMO and LUMO energy levels of the six complexes. The calculated HOMO is generally located over the Ir(5d) centre (about 45?%) and the amide-substituted 2-phenylquinoline ligand, whilst the LUMO is localized over the ancillary 2,2'-bipyridine ligand. Similar calculations for [Ir(L6)2(bpy)]PF6 revealed a different HOMO depiction with locale on the pendant chromophores. A companion calculation, using an alternative relativistic approach (i.e. incorporating spinorbit coupling effects) conducted on a simplified model compound, provided HOMO/LUMO depictions that are essentially identical to the non-relativistic calculation, which predicts long-lived phosphorescent emission from the HOMOLUMO transition. Luminescence studies showed the predictable and tunable phosphorescent emission wavelengths between 585627 nm. The experimental and theoretical studies suggest that the electronic nature of the pendant amide substituent influences the energy of the emitting state the strongly electron-withdrawing groups bathochromically shift the luminescence wavelength

    Using substituted cyclometalated quinoxaline ligands to finely tune the luminescence properties of iridium(III) complexes

    No full text
    The syntheses of five new heteroleptic iridium complexes [Ir(L1–4)2(Diobpy)]PF6 (where Diobpy = 4,4′-dioctylamido-2,2′-bipyridine) and [Ir(L3)2(bpy)]PF6 (where L = para-substituted 2,3-diphenylquinoxaline cyclometalating ligands; bpy = 2,2′-bipyridine) are described. The structures of [Ir(L3)2(Diobpy)]PF6 and [Ir(L3)2(bpy)]PF6 show that the complexes each adopt a distorted octahedral geometry with the expected trans-N, cis-C arrangement of the cyclometalated ligands. Electrochemical studies confirmed subtle perturbation of the IrIII/IV redox couple as a function of ligand variation. Luminescence studies showed the significant contribution of 3MLCT to the phosphorescent character with predictable and modestly tunable emission wavelengths between 618 and 636 nm. DFT studies provided approximate qualitative descriptions of the HOMO {located over the Ir(5d) center (11–42%) and the phenylquinoxaline ligand (54–87%)} and LUMO {located over the ancillary bipyridine ligands (ca. 93%)} energy levels of the five complexes, confirming significant MLCT character. TD-DFT calculations indicate that UV–vis absorption and subsequent emission has substantial MLCT character, mixed with LLCT. Predicted absorption and emission wavelengths are in good general agreement with the UV–vis and luminescence experiments
    corecore