200 research outputs found

    Identification of cardiac MRI thresholds for risk stratification in pulmonary arterial hypertension

    Get PDF
    Rationale: Pulmonary arterial hypertension (PAH) is a life-shortening condition. The European Society of Cardiology and European Respiratory Society and the REVEAL (North American Registry to Evaluate Early and Long-Term PAH Disease Management) risk score calculator (REVEAL 2.0) identify thresholds to predict 1-year mortality. Objectives: This study evaluates whether cardiac magnetic resonance imaging (MRI) thresholds can be identified and used to aid risk stratification and facilitate decision-making. Methods: Consecutive patients with PAH (n = 438) undergoing cardiac MRI were identified from the ASPIRE (Assessing the Spectrum of Pulmonary Hypertension Identified at a Referral Center) MRI database. Thresholds were identified from a discovery cohort and evaluated in a test cohort. Measurements and Main Results: A percentage-predicted right ventricular end-systolic volume index threshold of 227% or a left ventricular end-diastolic volume index of 58 ml/m2 identified patients at low (10%) risk of 1-year mortality. These metrics respectively identified 63% and 34% of patients as low risk. Right ventricular ejection fraction >54%, 37–54%, and <37% identified 21%, 43%, and 36% of patients at low, intermediate, and high risk, respectively, of 1-year mortality. At follow-up cardiac MRI, patients who improved to or were maintained in a low-risk group had a 1-year mortality <5%. Percentage-predicted right ventricular end-systolic volume index independently predicted outcome and, when used in conjunction with the REVEAL 2.0 risk score calculator or a modified French Pulmonary Hypertension Registry approach, improved risk stratification for 1-year mortality. Conclusions: Cardiac MRI can be used to risk stratify patients with PAH using a threshold approach. Percentage-predicted right ventricular end-systolic volume index can identify a high percentage of patients at low-risk of 1-year mortality and, when used in conjunction with current risk stratification approaches, can improve risk stratification. This study supports further evaluation of cardiac MRI in risk stratification in PAH

    Primordial black holes in braneworld cosmologies: astrophysical constraints

    Get PDF
    In two recent papers we explored the modifications to primordial black hole physics when one moves to the simplest braneworld model, Randall--Sundrum type II. Both the evaporation law and the cosmological evolution of the population can be modified, and additionally accretion of energy from the background can be dominant over evaporation at high energies. In this paper we present a detailed study of how this impacts upon various astrophysical constraints, analyzing constraints from the present density, from the present high-energy photon background radiation, from distortion of the microwave background spectrum, and from processes affecting light element abundances both during and after nucleosynthesis. Typically, the constraints on the formation rate of primordial black holes weaken as compared to the standard cosmology if black hole accretion is unimportant at high energies, but can be strengthened in the case of efficient accretion.Comment: 17 pages RevTeX4 file with three figures incorporated; final paper in series astro-ph/0205149 and astro-ph/0208299. Minor changes to match version accepted by Physical Review

    Enhanced Secretion of Amylase from Exocrine Pancreas of Connexin32-deficient Mice

    Get PDF
    To determine whether junctional communication between pancreatic acinar cells contributes to their secretory function in vivo, we have compared wild-type mice, which express the gap junctional proteins connexin32 (Cx32) and connexin26, to mice deficient for the Cx32 gene. Pancreatic acinar cells from Cx32 (−/−) mice failed to express Cx32 as evidenced by reverse transcription–PCR and immunolabeling and showed a marked reduction (4.8- and 25-fold, respectively) in the number and size of gap junctions. Dye transfer studies showed that the extent of intercellular communication was inhibited in Cx32 (−/−) acini. However, electrical coupling was detected by dual patch clamp recording in Cx32 (−/−) acinar cell pairs. Although wild-type and Cx32 (−/−) acini were similarly stimulated to release amylase by carbamylcholine, Cx32 (−/−) acini showed a twofold increase of their basal secretion. This effect was caused by an increase in the proportion of secreting acini, as detected with a reverse hemolytic plaque assay. Blood measurements further revealed that Cx32 (−/−) mice had elevated basal levels of circulating amylase. The results, which demonstrate an inverse relationship between the extent of acinar cell coupling and basal amylase secretion in vivo, support the view that the physiological recruitment of secretory acinar cells is regulated by gap junction mediated intercellular communication

    Cardiovascular magnetic resonance predicts all-cause mortality in pulmonary hypertension associated with heart failure with preserved ejection fraction

    Get PDF
    This study aimed to determine the prognostic value of cardiovascular magnetic resonance (CMR) in patients with heart failure with preserved ejection fraction and associated pulmonary hypertension (pulmonary hypertension-HFpEF). Patients with pulmonary hypertension-HFpEF were recruited from the ASPIRE registry and underwent right heart catheterisation (RHC) and CMR. On RHC, the inclusion criteria was a mean pulmonary artery pressure (MPAP) ≥ 25 mmHg and pulmonary arterial wedge pressure > 15 mmHg and, on CMR, a left atrial volume > 41 ml/m2 with left ventricular ejection fraction > 50%. Cox regression was performed to evaluate CMR against all-cause mortality. In this study, 116 patients with pulmonary hypertension-HFpEF were identified. Over a mean follow-up period of 3 ± 2 years, 61 patients with pulmonary hypertension-HFpEF died (53%). In univariate regression, 11 variables demonstrated association to mortality: indexed right ventricular (RV) volumes and stroke volume, right ventricular ejection fraction (RVEF), indexed RV mass, septal angle, pulmonary artery systolic/diastolic area and its relative area change. In multivariate regression, only three variables were independently associated with mortality: RVEF (HR 0.64, P < 0.001), indexed RV mass (HR 1.46, P < 0.001) and IV septal angle (HR 1.48, P < 0.001). Our CMR model had 0.76 area under the curve (P < 0.001) to predict mortality. This study confirms that pulmonary hypertension in patients with HFpEF is associated with a poor prognosis and we observe that CMR can risk stratify these patients and predict all-cause mortality. When patients with HFpEF develop pulmonary hypertension, CMR measures that reflect right ventricular afterload and function predict all-cause mortality

    The Atmospheric Chemistry Suite (ACS) of Three Spectrometers for the ExoMars 2016 Trace Gas Orbiter

    Get PDF
    The Atmospheric Chemistry Suite (ACS) package is an element of the Russian contribution to the ESA-Roscosmos ExoMars 2016 Trace Gas Orbiter (TGO) mission. ACS consists of three separate infrared spectrometers, sharing common mechanical, electrical, and thermal interfaces. This ensemble of spectrometers has been designed and developed in response to the Trace Gas Orbiter mission objectives that specifically address the requirement of high sensitivity instruments to enable the unambiguous detection of trace gases of potential geophysical or biological interest. For this reason, ACS embarks a set of instruments achieving simultaneously very high accuracy (ppt level), very high resolving power (>10,000) and large spectral coverage (0.7 to 17 μm—the visible to thermal infrared range). The near-infrared (NIR) channel is a versatile spectrometer covering the 0.7–1.6 μm spectral range with a resolving power of ∼20,000. NIR employs the combination of an echelle grating with an AOTF (Acousto-Optical Tunable Filter) as diffraction order selector. This channel will be mainly operated in solar occultation and nadir, and can also perform limb observations. The scientific goals of NIR are the measurements of water vapor, aerosols, and dayside or night side airglows. The mid-infrared (MIR) channel is a cross-dispersion echelle instrument dedicated to solar occultation measurements in the 2.2–4.4 μm range. MIR achieves a resolving power of >50,000. It has been designed to accomplish the most sensitive measurements ever of the trace gases present in the Martian atmosphere. The thermal-infrared channel (TIRVIM) is a 2-inch double pendulum Fourier-transform spectrometer encompassing the spectral range of 1.7–17 μm with apodized resolution varying from 0.2 to 1.3 cm−1. TIRVIM is primarily dedicated to profiling temperature from the surface up to ∼60 km and to monitor aerosol abundance in nadir. TIRVIM also has a limb and solar occultation capability. The technical concept of the instrument, its accommodation on the spacecraft, the optical designs as well as some of the calibrations, and the expected performances for its three channels are described

    Incremental Shuttle Walking Test Distance and Autonomic Dysfunction Predict Survival in Pulmonary Arterial Hypertension

    Get PDF
    Background To ensure effective monitoring of pulmonary arterial hypertension (PAH), a simple, reliable assessment of exercise capacity applicable over a range of disease severity is needed. The aim of this study was to assess the ability of the incremental shuttle walk test (ISWT) to correlate with disease severity, measure sensitivity to change, and predict survival in PAH. Methods We enrolled 418 treatment-naïve patients with PAH with baseline ISWT within 3 months of cardiac catheterization. Clinical validity and prognostic value of ISWT distance were assessed at baseline and 1 year. Results ISWT distance was found to correlate at baseline with World Health Organization functional class, Borg score, and hemodynamics without a ceiling effect (all p 18 beats/min, highest SBP, change in SBP, and 3-minute SBP ratio) were significant predictors of survival (all p < 0.05). Conclusions In patients with PAH, the ISWT is simple to perform, allows assessment of maximal exercise capacity, is sensitive to treatment effect, predicts outcome, and has no ceiling effect. Also, measures of autonomic function made post-exercise predict survival in PAH

    Right ventricular remodelling in pulmonary arterial hypertension predicts treatment response.

    Get PDF
    Objectives: To determine the prognostic value of patterns of right ventricular adaptation in patients with pulmonary arterial hypertension (PAH), assessed using cardiac magnetic resonance (CMR) imaging at baseline and follow-up. Methods: Patients attending the Sheffield Pulmonary Vascular Disease Unit with suspected pulmonary hypertension were recruited into the ASPIRE (Assessing the Spectrum of Pulmonary hypertension Identified at a REferral Centre) Registry. With exclusion of congenital heart disease, consecutive patients with PAH were followed up until the date of census or death. Right ventricular end-systolic volume index adjusted for age and sex and ventricular mass index were used to categorise patients into four different volume/mass groups: low-volume-low-mass, low-volume-high-mass, high-volume-low-mass and high-volume-high-mass. The prognostic value of the groups was assessed with one-way analysis of variance and Kaplan-Meier plots. Transition of the groups was studied. Results: A total of 505 patients with PAH were identified, 239 (47.3%) of whom have died at follow-up (median 4.85 years, IQR 4.05). The mean age of the patients was 59±16 and 161 (32.7%) were male. Low-volume-low-mass was associated with CMR and right heart catheterisation metrics predictive of improved prognosis. There were 124 patients who underwent follow-up CMR (median 1.11 years, IQR 0.78). At both baseline and follow-up, the high-volume-low-mass group had worse prognosis than the low-volume-low-mass group (p<0.001). With PAH therapy, 73.5% of low-volume-low-mass patients remained in this group, whereas only 17.4% of high-volume-low-mass patients transitioned into low-volume-low-mass. Conclusions: Right ventricular adaptation assessed using CMR has prognostic value in patients with PAH. Patients with maladaptive remodelling (high-volume-low-mass) are at high risk of treatment failure
    corecore