327 research outputs found

    Predicting Crystal Structures with Data Mining of Quantum Calculations

    Full text link
    Predicting and characterizing the crystal structure of materials is a key problem in materials research and development. It is typically addressed with highly accurate quantum mechanical computations on a small set of candidate structures, or with empirical rules that have been extracted from a large amount of experimental information, but have limited predictive power. In this letter, we transfer the concept of heuristic rule extraction to a large library of ab-initio calculated information, and demonstrate that this can be developed into a tool for crystal structure prediction.Comment: 4 pages, 3 pic

    Phase diagram and structural diversity of the densest binary sphere packings

    Full text link
    The densest binary sphere packings have historically been very difficult to determine. The only rigorously known packings in the alpha-x plane of sphere radius ratio alpha and relative concentration x are at the Kepler limit alpha = 1, where packings are monodisperse. Utilizing an implementation of the Torquato-Jiao sphere-packing algorithm [S. Torquato and Y. Jiao, Phys. Rev. E 82, 061302 (2010)], we present the most comprehensive determination to date of the phase diagram in (alpha,x) for the densest binary sphere packings. Unexpectedly, we find many distinct new densest packings.Comment: 5 pages, 2 figures. Accepted for publication in Physical Review Letters on August 9th, 201

    An empirical test for cellular automaton models of traffic flow

    Full text link
    Based on a detailed microscopic test scenario motivated by recent empirical studies of single-vehicle data, several cellular automaton models for traffic flow are compared. We find three levels of agreement with the empirical data: 1) models that do not reproduce even qualitatively the most important empirical observations, 2) models that are on a macroscopic level in reasonable agreement with the empirics, and 3) models that reproduce the empirical data on a microscopic level as well. Our results are not only relevant for applications, but also shed new light on the relevant interactions in traffic flow.Comment: 28 pages, 36 figures, accepted for publication in PR

    Structure stability in the simple element sodium under pressure

    Full text link
    The simple alkali metal Na, that crystallizes in a body-centred cubic structure at ambient pressure, exhibits a wealth of complex phases at extreme conditions as found by experimental studies. The analysis of the mechanism of stabilization of some of these phases, namely, the low-temperature Sm-type phase and the high-pressure cI16 and oP8 phases, shows that they satisfy the criteria for the Hume-Rothery mechanism. These phases appear to be stabilized due to a formation of numerous planes in a Brillouin-Jones zone in the vicinity of the Fermi sphere of Na, which leads to the reduction of the overall electronic energy. For the oP8 phase, this mechanism seems to be working if one assumes that Na becomes divalent metal at this density. The oP8 phase of Na is analysed in comparison with the MnP-type oP8 phases known in binary compounds, as well as in relation to the hP4 structure of the NiAs-type

    Geology of the Victoria quadrangle (H02), Mercury

    Get PDF
    Mercury’s quadrangle H02 ‘Victoria’ is located in the planet’s northern hemisphere and lies between latitudes 22.5° N and 65° N, and between longitudes 270° E and 360° E. This quadrangle covers 6.5% of the planet’s surface with a total area of almost 5 million km2. Our 1:3,000,000-scale geologic map of the quadrangle was produced by photo-interpretation of remotely sensed orbital images captured by the MESSENGER spacecraft. Geologic contacts were drawn between 1:300,000 and 1:600,000 mapping scale and constitute the boundaries of intercrater, intermediate and smooth plains units; in addition, three morpho-stratigraphic classes of craters larger than 20 km were mapped. The geologic map reveals that this area is dominated by Intercrater Plains encompassing some almost-coeval, probably younger, Intermediate Plains patches and interrupted to the north-west, north-east and east by the Calorian Northern Smooth Plains. This map represents the first complete geologic survey of the Victoria quadrangle at this scale, and an improvement of the existing 1:5,000,000 Mariner 10-based map, which covers only 36% of the quadrangle

    An electrogenic redox loop in sulfate reduction reveals a likely widespread mechanism of energy conservation

    Get PDF
    The bioenergetics of anaerobic metabolism frequently relies on redox loops performed by membrane complexes with substrate- and quinone-binding sites on opposite sides of the membrane. However, in sulfate respiration (a key process in the biogeochemical sulfur cycle), the substrate- and quinone-binding sites of the QrcABCD complex are periplasmic, and their role in energy conservation has not been elucidated. Here we show that the QrcABCD complex of Desulfovibrio vulgaris is electrogenic, as protons and electrons required for quinone reduction are extracted from opposite sides of the membrane, with a H+/e− ratio of 1. Although the complex does not act as a H+-pump, QrcD may include a conserved proton channel leading from the N-side to the P-side menaquinone pocket. Our work provides evidence of how energy is conserved during dissimilatory sulfate reduction, and suggests mechanisms behind the functions of related bacterial respiratory complexes in other bioenergetic contexts

    Investigating Mercury's Environment with the Two-Spacecraft BepiColombo Mission

    Get PDF
    The ESA-JAXA BepiColombo mission will provide simultaneous measurements from two spacecraft, offering an unprecedented opportunity to investigate magnetospheric and exospheric dynamics at Mercury as well as their interactions with the solar wind, radiation, and interplanetary dust. Many scientific instruments onboard the two spacecraft will be completely, or partially devoted to study the near-space environment of Mercury as well as the complex processes that govern it. Many issues remain unsolved even after the MESSENGER mission that ended in 2015. The specific orbits of the two spacecraft, MPO and Mio, and the comprehensive scientific payload allow a wider range of scientific questions to be addressed than those that could be achieved by the individual instruments acting alone, or by previous missions. These joint observations are of key importance because many phenomena in Mercury's environment are highly temporally and spatially variable. Examples of possible coordinated observations are described in this article, analysing the required geometrical conditions, pointing, resolutions and operation timing of different BepiColombo instruments sensors.Peer reviewe
    • …
    corecore