1,490 research outputs found

    A pseudo-spectral approach to inverse problems in interface dynamics

    Full text link
    An improved scheme for computing coupling parameters of the Kardar-Parisi-Zhang equation from a collection of successive interface profiles, is presented. The approach hinges on a spectral representation of this equation. An appropriate discretization based on a Fourier representation, is discussed as a by-product of the above scheme. Our method is first tested on profiles generated by a one-dimensional Kardar-Parisi-Zhang equation where it is shown to reproduce the input parameters very accurately. When applied to microscopic models of growth, it provides the values of the coupling parameters associated with the corresponding continuum equations. This technique favorably compares with previous methods based on real space schemes.Comment: 12 pages, 9 figures, revtex 3.0 with epsf style, to appear in Phys. Rev.

    Current-Induced Torques in Magnetic Metals: Beyond Spin Transfer

    Full text link
    Current-induced torques on ferromagnetic nanoparticles and on domain walls in ferromagnetic nanowires are normally understood in terms of transfer of conserved spin angular momentum between spin-polarized currents and the magnetic condensate. In a series of recent articles we have discussed a microscopic picture of current-induced torques in which they are viewed as following from exchange fields produced by the misaligned spins of current carrying quasiparticles. This picture has the advantage that it can be applied to systems in which spin is not approximately conserved. More importantly, this point of view makes it clear that current-induced torques can also act on the order parameter of an antiferromagnetic metal, even though this quantity is not related to total spin. In this informal and intentionally provocative review we explain this picture and discuss its application to antiferromagnets.Comment: 5 figures, to appear in Journal of Magnetism and

    Reproducibility of computed tomography angiography data analysis using semiautomated plaque quantification software: Implications for the design of longitudinal studies

    Get PDF
    Reproducibility of the quantitative assessment of atherosclerosis by computed tomography coronary angiography (CTCA) is paramount for the design of longitudinal studies. The purpose of this study was to assess the inter- and intra-observer reproducibility using semiautomated CT plaque analysis software in symptomatic individuals. CTCA was performed in 10 symptomatic patients after percutaneous treatment of the culprit lesions and was repeated after 3 years. The plaque quantitative analysis was performed in untreated vessels with mild-tomoderate atherosclerosis and included geometrical and compositional characteristics using semiautomated CT plaque analysis software. A total of 945 matched crosssections from 21 segments were analyzed independently by a second reviewer to assess inter-observer variability; the first observer repeated all the analyses after 3 months to assess intra-observer variability. The observer variability was also compared to the absolute plaque changes detected over time. Agreement was evaluated by Bland-Altman analysis and co

    "Exhibitionists" and "voyeurs" do it better: A shared environment for flexible coordination with tacit messages

    Get PDF
    Coordination between multiple autonomous agents is a major issue for open multi-agent systems. This paper proposes the notion of Behavioural Implicit Communication (BIC) originally devised in human and animal societies as a new and critical coordination mechanism also for artificial agents. BIC is a parasitical form of communication that exploits both some environmental properties and the agents? capacity to interpret their actions. In this paper we abstract from the agents? architecture to focus on the interaction mediated by the environment. Observability of the environment ? and in particular of agents? actions ? is crucial for implementing BIC-based form of coordination in artificial societies. Accordingly in this paper we introduce an abstract model of environment providing services to enhance observation power of agents, enabling BIC and other form of observation-based coordination. Also, we describe a typology of environments and examples of observation based coordination with and without implicit communication

    Light inactivation of water transport and protein–protein interactions of aquaporin–Killer Red chimeras

    Get PDF
    Aquaporins (AQPs) have a broad range of cellular and organ functions; however, nontoxic inhibitors of AQP water transport are not available. Here, we applied chromophore-assisted light inactivation (CALI) to inhibit the water permeability of AQP1, and of two AQP4 isoforms (M1 and M23), one of which (M23) forms aggregates at the cell plasma membrane. Chimeras containing Killer Red (KR) and AQPs were generated with linkers of different lengths. Osmotic water permeability of cells expressing KR/AQP chimeras was measured from osmotic swelling–induced dilution of cytoplasmic chloride, which was detected using a genetically encoded chloride-sensing fluorescent protein. KR-AQP1 red fluorescence was bleached rapidly (∼10% per second) by wide-field epifluorescence microscopy. After KR bleaching, KR-AQP1 water permeability was reduced by up to 80% for the chimera with the shortest linker. Remarkably, CALI-induced reduction in AQP4-KR water permeability was approximately twice as efficient for the aggregate-forming M23 isoform; this suggests intermolecular CALI, which was confirmed by native gel electrophoresis on cells coexpressing M23-AQP4-KR and myc-tagged M23-AQP4. CALI also disrupted the interaction of AQP4 with a neuromyelitis optica autoantibody directed against an extracellular epitope on AQP4. CALI thus permits rapid, spatially targeted and irreversible reduction in AQP water permeability and interactions in live cells. Our data also support the utility of CALI to study protein–protein interactions as well as other membrane transporters and receptors

    Compatibility with cap-products in Tsygan's formality and homological Duflo isomorphism

    Full text link
    In this paper we prove, with details and in full generality, that the isomorphism induced on tangent homology by the Shoikhet-Tsygan formality L∞L_\infty-quasi-isomorphism for Hochschild chains is compatible with cap-products. This is a homological analog of the compatibility with cup-products of the isomorphism induced on tangent cohomology by Kontsevich formality L∞L_\infty-quasi-isomorphism for Hochschild cochains. As in the cohomological situation our proof relies on a homotopy argument involving a variant of {\bf Kontsevich eye}. In particular we clarify the r\^ole played by the {\bf I-cube} introduced in \cite{CR1}. Since we treat here the case of a most possibly general Maurer-Cartan element, not forced to be a bidifferential operator, then we take this opportunity to recall the natural algebraic structures on the pair of Hochschild cochain and chain complexes of an A∞A_\infty-algebra. In particular we prove that they naturally inherit the structure of an A∞A_\infty-algebra with an A∞A_\infty-(bi)module.Comment: The first and second Section on B∞B_\infty-algebras and modules have been completely re-written, with new results; partial revision of Section 3; the proofs in Section 4 and 5 have been re-formulated in a more general context; we added Section 8 on globalisatio

    Dust Devil Tracks

    Get PDF
    Dust devils that leave dark- or light-toned tracks are common on Mars and they can also be found on the Earth’s surface. Dust devil tracks (hereinafter DDTs) are ephemeral surface features with mostly sub-annual lifetimes. Regarding their size, DDT widths can range between ∼1 m and ∼1 km, depending on the diameter of dust devil that created the track, and DDT lengths range from a few tens of meters to several kilometers, limited by the duration and horizontal ground speed of dust devils. DDTs can be classified into three main types based on their morphology and albedo in contrast to their surroundings; all are found on both planets: (a) dark continuous DDTs, (b) dark cycloidal DDTs, and (c) bright DDTs. Dark continuous DDTs are the most common type on Mars. They are characterized by their relatively homogenous and continuous low albedo surface tracks. Based on terrestrial and martian in situ studies, these DDTs most likely form when surficial dust layers are removed to expose larger-grained substrate material (coarse sands of ≥500 μm in diameter). The exposure of larger-grained materials changes the photometric properties of the surface; hence leading to lower albedo tracks because grain size is photometrically inversely proportional to the surface reflectance. However, although not observed so far, compositional differences (i.e., color differences) might also lead to albedo contrasts when dust is removed to expose substrate materials with mineralogical differences. For dark continuous DDTs, albedo drop measurements are around 2.5 % in the wavelength range of 550–850 nm on Mars and around 0.5 % in the wavelength range from 300–1100 nm on Earth. The removal of an equivalent layer thickness around 1 μm is sufficient for the formation of visible dark continuous DDTs on Mars and Earth. The next type of DDTs, dark cycloidal DDTs, are characterized by their low albedo pattern of overlapping scallops. Terrestrial in situ studies imply that they are formed when sand-sized material that is eroded from the outer vortex area of a dust devil is redeposited in annular patterns in the central vortex region. This type of DDT can also be found in on Mars in orbital image data, and although in situ studies are lacking, terrestrial analog studies, laboratory work, and numerical modeling suggest they have the same formation mechanism as those on Earth. Finally, bright DDTs are characterized by their continuous track pattern and high albedo compared to their undisturbed surroundings. They are found on both planets, but to date they have only been analyzed in situ on Earth. Here, the destruction of aggregates of dust, silt and sand by dust devils leads to smooth surfaces in contrast to the undisturbed rough surfaces surrounding the track. The resulting change in photometric properties occurs because the smoother surfaces have a higher reflectance compared to the surrounding rough surface, leading to bright DDTs. On Mars, the destruction of surficial dust-aggregates may also lead to bright DDTs. However, higher reflective surfaces may be produced by other formation mechanisms, such as dust compaction by passing dust devils, as this may also cause changes in photometric properties. On Mars, DDTs in general are found at all elevations and on a global scale, except on the permanent polar caps. DDT maximum areal densities occur during spring and summer in both hemispheres produced by an increase in dust devil activity caused by maximum insolation. Regionally, dust devil densities vary spatially likely controlled by changes in dust cover thicknesses and substrate materials. This variability makes it difficult to infer dust devil activity from DDT frequencies. Furthermore, only a fraction of dust devils leave tracks. However, DDTs can be used as proxies for dust devil lifetimes and wind directions and speeds, and they can also be used to predict lander or rover solar panel clearing events. Overall, the high DDT frequency in many areas on Mars leads to drastic albedo changes that affect large-scale weather patterns
    • …
    corecore