3,737 research outputs found

    Trophic roles of tadpoles in tropical Australian streams

    Get PDF
    Tadpoles can be abundant consumers in stream ecosystems, and may influence the structure and function of streams through their feeding activities and interactions with other organisms. To understand the contribution of tadpoles to stream functioning, and the potential impact of their loss, it is necessary to determine their diets and how they might influence food-web structure. Using gut-content analysis and stable-isotope analysis of N and C, we determined the main food sources and trophic positions of tadpoles of five native frog species, invertebrates, and fish in upland and lowland Australian Wet Tropics streams. Omnivory was prevalent among the tadpoles and invertebrates. Tadpoles consumed different food according to availability and nutrient quality, but assimilated mainly biofilm and algae. Most tadpoles and invertebrates assimilated the same high-quality foods. Food webs in upland riffles were simplified by local extinction of tadpoles, and were probably simplified in pools in the cooler months by seasonal decline in tadpole abundance. Food-web complexity was increased in some pools by the presence of predatory fish and a greater number of basal sources. As tadpoles are important seasonal components in stream food webs, their local extinction can greatly alter food-web structure and complexity and, possibly, processes such as leaf litter breakdown and sediment accumulation

    Integrable Deformations of c^=1\hat{c}=1 Strings in Flux Backgrounds

    Full text link
    We study d=2 0A string theory perturbed by tachyon momentum modes in backgrounds with non-trivial tachyon condensate and Ramond-Ramond (RR) flux. In the matrix model description, we uncover a complexified Toda lattice hierarchy constrained by a pair of novel holomorphic string equations. We solve these constraints in the classical limit for general RR flux and tachyon condensate. Due to the non-holomorphic nature of the tachyon perturbations, the transcendental equations which we derive for the string susceptibility are manifestly non-holomorphic. We explore the phase structure and critical behavior of the theory.Comment: 39 pages, 4 figure

    Arsenite sorption and co-precipitation with calcite

    Get PDF
    Sorption of As(III) by calcite was investigated as a function of As(III) concentration, time and pH. The sorption isotherm, i.e. the log As(III) vs. log [As(OH)3 degrees / Assat] plot is S-shaped and has been modelled on an extended version of the surface precipitation model. At low concentrations, As(OH)3 degrees is adsorbed by complexation to surface Ca surface sites, as previously described by the X-ray standing wave technique. The inflexion point of the isotherm, where As(OH)3 degrees is limited by the amount of surface sites (ST), yields 6 sites nm-2 in good agreement with crystallographic data. Beyond this value, the amount of sorbed arsenic increases linearly with solution concentration, up to the saturation of arsenic with respect to the precipitation of CaHAsO3(s). The solid solutions formed in this concentration range were examined by X-ray and neutron diffraction. The doped calcite lattice parameters increase with arsenic content while c/a ratio remains constant. Our results made on bulk calcite on the atomic displacement of As atoms along [0001] direction extend those published by Cheng et al., (1999) on calcite surface. This study provides a molecular-level explanation for why As(III) is trapped by calcite in industrial treatments.Comment: 9 page

    Viewers base estimates of face matching accuracy on their own familiarity: Explaining the photo-ID paradox

    Get PDF
    Matching two different images of a face is a very easy task for familiar viewers, but much harder for unfamiliar viewers. Despite this, use of photo-ID is widespread, and people appear not to know how unreliable it is. We present a series of experiments investigating bias both when performing a matching task and when predicting other people’s performance. Participants saw pairs of faces and were asked to make a same/different judgement, after which they were asked to predict how well other people, unfamiliar with these faces, would perform. In four experiments we show different groups of participants familiar and unfamiliar faces, manipulating this in different ways: celebrities in experiments 1 to 3 and personally familiar faces in experiment 4. The results consistently show that people match images of familiar faces more accurately than unfamiliar faces. However, people also reliably predict that the faces they themselves know will be more accurately matched by different viewers. This bias is discussed in the context of current theoretical debates about face recognition, and we suggest that it may underlie the continued use of photo-ID, despite the availability of evidence about its unreliability

    Profiling a decade of information systems frontiers’ research

    Get PDF
    This article analyses the first ten years of research published in the Information Systems Frontiers (ISF) from 1999 to 2008. The analysis of the published material includes examining variables such as most productive authors, citation analysis, universities associated with the most publications, geographic diversity, authors’ backgrounds and research methods. The keyword analysis suggests that ISF research has evolved from establishing concepts and domain of information systems (IS), technology and management to contemporary issues such as outsourcing, web services and security. The analysis presented in this paper has identified intellectually significant studies that have contributed to the development and accumulation of intellectual wealth of ISF. The analysis has also identified authors published in other journals whose work largely shaped and guided the researchers published in ISF. This research has implications for researchers, journal editors, and research institutions

    “What if There's Something Wrong with Her?”‐How Biomedical Technologies Contribute to Epistemic Injustice in Healthcare

    Get PDF
    While there is a steadily growing literature on epistemic injustice in healthcare, there are few discussions of the role that biomedical technologies play in harming patients in their capacity as knowers. Through an analysis of newborn and pediatric genetic and genomic sequencing technologies (GSTs), I argue that biomedical technologies can lead to epistemic injustice through two primary pathways: epistemic capture and value partitioning. I close by discussing the larger ethical and political context of critical analyses of GSTs and their broader implications for just and equitable healthcare delivery

    Attosecond-scale absorption at extreme intensities

    Get PDF
    A novel non-ponderomotive absorption mechanism, originally presented by Baeva et al. in one dimension, is extended into higher dimensions for the first time. This absorption mechanism, the Zero Vector Potential (ZVP), is expected to dominate the interactions of ultra-intense laser pulses with critically over-dense plasmas such as those that are expected with the Extreme Light Infrastructure laser systems. It is shown that the mathematical form of the ZVP mechanism and its key scaling relations found by Baeva et al. in 1D are identically reproduced in higher dimensions. The two dimensional particle-in-cell simulations are then used to validate both the qualitative and quantitative predictions of the theory

    The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: measuring structure growth using passive galaxies

    Get PDF
    We explore the benefits of using a passively evolving population of galaxies to measure the evolution of the rate of structure growth between z=0.25 and z=0.65 by combining data from the SDSS-I/II and SDSS-III surveys. The large-scale linear bias of a population of dynamically passive galaxies, which we select from both surveys, is easily modeled. Knowing the bias evolution breaks degeneracies inherent to other methodologies, and decreases the uncertainty in measurements of the rate of structure growth and the normalization of the galaxy power-spectrum by up to a factor of two. If we translate our measurements into a constraint on sigma_8(z=0) assuming a concordance cosmological model and General Relativity (GR), we find that using a bias model improves our uncertainty by a factor of nearly 1.5. Our results are consistent with a flat Lambda Cold Dark Matter model and with GR.Comment: Accepted for publication in MNRAS (clarifications added, results and conclusions unchanged

    The Two-Loop Scale Dependence of the Static QCD Potential including Quark Masses

    Get PDF
    The interaction potential V(Q^2) between static test charges can be used to define an effective charge αV(Q2)\alpha_V(Q^2) and a physically-based renormalization scheme for quantum chromodynamics and other gauge theories. In this paper we use recent results for the finite-mass fermionic corrections to the heavy-quark potential at two-loops to derive the next-to-leading order term for the Gell Mann-Low function of the V-scheme. The resulting effective number of flavors NF(Q2/m2)N_F(Q^2/m^2) in the αV\alpha_V scheme is determined as a gauge-independent and analytic function of the ratio of the momentum transfer to the quark pole mass. The results give automatic decoupling of heavy quarks and are independent of the renormalization procedure. Commensurate scale relations then provide the next-to-leading order connection between all perturbatively calculable observables to the analytic and gauge-invariant αV\alpha_V scheme without any scale ambiguity and a well defined number of active flavors. The inclusion of the finite quark mass effects in the running of the coupling is compared with the standard treatment of finite quark mass effects in the MSˉ\bar{MS} scheme.Comment: 27 pages, 13 figure

    High-throughput identification of genotype-specific cancer vulnerabilities in mixtures of barcoded tumor cell lines.

    Get PDF
    Hundreds of genetically characterized cell lines are available for the discovery of genotype-specific cancer vulnerabilities. However, screening large numbers of compounds against large numbers of cell lines is currently impractical, and such experiments are often difficult to control. Here we report a method called PRISM that allows pooled screening of mixtures of cancer cell lines by labeling each cell line with 24-nucleotide barcodes. PRISM revealed the expected patterns of cell killing seen in conventional (unpooled) assays. In a screen of 102 cell lines across 8,400 compounds, PRISM led to the identification of BRD-7880 as a potent and highly specific inhibitor of aurora kinases B and C. Cell line pools also efficiently formed tumors as xenografts, and PRISM recapitulated the expected pattern of erlotinib sensitivity in vivo
    • 

    corecore