1,363 research outputs found

    The GLAS physical inversion method for analysis of HIRS2/MSU sounding data

    Get PDF
    Goddard Laboratory for Atmospheric Sciences has developed a method to derive atmospheric temperature profiles, sea or land surface temperatures, sea ice extent and snow cover, and cloud heights and fractional cloud, from HIRS2/MSU radiance data. Chapter 1 describes the physics used in the radiative transfer calculations and demonstrates the accuracy of the calculations. Chapter 2 describes the rapid transmittance algorithm used and demonstrates its accuracy. Chapter 3 describes the theory and application of the techniques used to analyze the satellite data. Chapter 4 shows results obtained for January 1979

    A Dramatic Decrease in Carbon Star Formation in M31

    Full text link
    We analyze resolved stellar near-infrared photometry of 21 HST fields in M31 to constrain the impact of metallicity on the formation of carbon stars. Observations of nearby galaxies show that the carbon stars are increasingly rare at higher metallicity. Models indicate that carbon star formation efficiency drops due to the decrease in dredge-up efficiency in metal-rich thermally-pulsing Asymptotic Giant Branch (TP-AGB) stars, coupled to a higher initial abundance of oxygen. However, while models predict a metallicity ceiling above which carbon stars cannot form, previous observations have not yet pinpointed this limit. Our new observations reliably separate carbon stars from M-type TP-AGB stars across 2.6-13.7 kpc of M31's metal-rich disk using HST WFC3/IR medium-band filters. We find that the ratio of C to M stars (C/M) decreases more rapidly than extrapolations of observations in more metal-poor galaxies, resulting in a C/M that is too low by more than a factor of 10 in the innermost fields and indicating a dramatic decline in C star formation efficiency at metallicities higher than [M/H] \approx -0.1 dex. The metallicity ceiling remains undetected, but must occur at metallicities higher than what is measured in M31's inner disk ([M/H] \gtrsim +0.06 dex).Comment: 16 pages, 13 Figures; text clarifications in response to the referee. Results are unchanged; accepted for publication in Ap

    Resolved Near-infrared Stellar Populations in Nearby Galaxies

    Get PDF
    We present near-infrared (NIR) color-magnitude diagrams (CMDs) for the resolved stellar populations within 26 fields of 23 nearby galaxies (≲ 4 Mpc), based on images in the F110W and F160W filters taken with the Wide-Field Camera 3 (WFC3) on the Hubble Space Telescope (HST). The CMDs are measured in regions spanning a wide range of star formation histories, including both old dormant and young star-forming populations. We match key NIR CMD features with their counterparts in more familiar optical CMDs, and identify the red core helium-burning (RHeB) sequence as a significant contributor to the NIR flux in stellar populations younger than a few 100 Myr old. The strength of this feature suggests that the NIR mass-to-light ratio can vary significantly on short timescales in star-forming systems. The NIR luminosity of star-forming galaxies is therefore not necessarily proportional to the stellar mass. We note that these individual RHeB stars may also be misidentified as old stellar clusters in images of nearby galaxies. For older stellar populations, we discuss the CMD location of asymptotic giant branch (AGB) stars in the HST filter set and explore the separation of AGB subpopulations using a combination of optical and NIR colors. We empirically calibrate the magnitude of the NIR tip of the red giant branch in F160W as a function of color, allowing future observations in this widely adopted filter set to be used for distance measurements. We also analyze the properties of the NIR red giant branch (RGB) as a function of metallicity, showing a clear trend between NIR RGB color and metallicity. However, based on the current study, it appears unlikely that the slope of the NIR RGB can be used as an effective metallicity indicator in extragalactic systems with comparable data. Finally, we highlight issues with scattered light in the WFC3, which becomes significant for exposures taken close to a bright Earth limb

    Accommodation functions: co-dependency and relationship to refractive error

    Get PDF
    We assessed the extent to which different accommodative functions are correlated and whether accommodative functions predict the refractive error or the progression of myopia over a 12 month period in 64 young adults (30 myopes and 34 non-myopes). The functions were: amplitude of accommodation; monocular and binocular accommodative facility (6 m and 40 cm); monocular and binocular accommodative response to target distance; AC/A and CA/C ratios, tonic accommodation (dark focus and pinhole), accommodative hysteresis, and nearwork-induced transient myopia. Within groups of related accommodative functions (such as facility measures or open-loop measures) measurements on individuals were generally significantly correlated, however correlations between functions from different groups were generally not significant. Although accommodative amplitude and pinhole (open loop) accommodation were significantly different in myopes than in non-myopes, these functions were unrelated to myopia progression. Facility of accommodation and accommodative lag was independent predictors of myopia progression

    The Panchromatic Hubble Andromeda Treasury II. Tracing the Inner M31 Halo with Blue Horizontal Branch Stars

    Full text link
    We attempt to constrain the shape of M31's inner stellar halo by tracing the surface density of blue horizontal branch (BHB) stars at galactocentric distances ranging from 2 kpc to 35 kpc. Our measurements make use of resolved stellar photometry from a section of the Panchromatic Hubble Andromeda Treasury (PHAT) survey, supplemented by several archival Hubble Space Telescope observations. We find that the ratio of BHB to red giant stars is relatively constant outside of 10 kpc, suggesting that the BHB is as reliable a tracer of the halo population as the red giant branch. In the inner halo, we do not expect BHB stars to be produced by the high metallicity bulge and disk, making BHB stars a good candidate to be a reliable tracer of the stellar halo to much smaller galactocentric distances. If we assume a power-law profile r^(-\alpha) for the 2-D projected surface density BHB distribution, we obtain a high-quality fit with a 2-D power-law index of \alpha=2.6^{+0.3}_{-0.2} outside of 3 kpc, which flattens to \alpha<1.2 inside of 3 kpc. This slope is consistent with previous measurements but is anchored to a radial baseline that extends much farther inward. Finally, assuming azimuthal symmetry and a constant mass-to-light ratio, the best-fitting profile yields a total halo stellar mass of 2.1^{+1.7}_{-0.4} x 10^9 M_sun. These properties are comparable with both simulations of stellar halo formation formed by satellite disruption alone, and with simulations that include some in situ formation of halo stars.Comment: 15 pages, 1 table, 5 figures, accepted for publication in Ap

    The ALMA detection of CO rotational line emission in AGB stars in the Large Magellanic Cloud

    Get PDF
    Context. Low- and intermediate-mass stars lose most of their stellar mass at the end of their lives on the asymptotic giant branch (AGB). Determining gas and dust mass-loss rates (MLRs) is important in quantifying the contribution of evolved stars to the enrichment of the interstellar medium. Aims: This study attempts to spectrally resolve CO thermal line emission in a small sample of AGB stars in the Large Magellanic Cloud (LMC). Methods: The Atacama Large Millimeter Array was used to observe two OH/IR stars and four carbon stars in the LMC in the CO J = 2-1 line. Results: We present the first measurement of expansion velocities in extragalactic carbon stars. All four C stars are detected and wind expansion velocities and stellar velocities are directly measured. Mass-loss rates are derived from modelling the spectral energy distribution and Spitzer/IRS spectrum with the DUSTY code. The derived gas-to-dust ratios allow the predicted velocities to agree with the observed gas-to-dust ratios. The expansion velocities and MLRs are compared to a Galactic sample of well-studied relatively low MLRs stars supplemented with extreme C stars with properties that are more similar to the LMC targets. Gas MLRs derived from a simple formula are significantly smaller than those derived from dust modelling, indicating an order of magnitude underestimate of the estimated CO abundance, time-variable mass loss, or that the CO intensities in LMC stars are lower than predicted by the formula derived for Galactic objects. This could be related to a stronger interstellar radiation field in the LMC. Conclusions: Although the LMC sample is small and the comparison to Galactic stars is non-trivial because of uncertainties in their distances (hence luminosities), it appears that for C stars the wind expansion velocities in the LMC are lower than in the solar neighbourhood, while the MLRs appear to be similar. This is in agreement with dynamical dust-driven wind models

    The Panchromatic Hubble Andromeda Treasury

    Get PDF
    The Panchromatic Hubble Andromeda Treasury (PHAT) is an on-going HST Multicycle Treasury program to image ~1/3 of M31's star forming disk in 6 filters, from the UV to the NIR. The full survey will resolve the galaxy into more than 100 million stars with projected radii from 0-20 kpc over a contiguous 0.5 square degree area in 828 orbits, producing imaging in the F275W and F336W filters with WFC3/UVIS, F475W and F814W with ACS/WFC, and F110W and F160W with WFC3/IR. The resulting wavelength coverage gives excellent constraints on stellar temperature, bolometric luminosity, and extinction for most spectral types. The photometry reaches SNR=4 at F275W=25.1, F336W=24.9, F475W=27.9, F814W=27.1, F110W=25.5, and F160W=24.6 for single pointings in the uncrowded outer disk; however, the optical and NIR data are crowding limited, and the deepest reliable magnitudes are up to 5 magnitudes brighter in the inner bulge. All pointings are dithered and produce Nyquist-sampled images in F475W, F814W, and F160W. We describe the observing strategy, photometry, astrometry, and data products, along with extensive tests of photometric stability, crowding errors, spatially-dependent photometric biases, and telescope pointing control. We report on initial fits to the structure of M31's disk, derived from the density of RGB stars, in a way that is independent of the assumed M/L and is robust to variations in dust extinction. These fits also show that the 10 kpc ring is not just a region of enhanced recent star formation, but is instead a dynamical structure containing a significant overdensity of stars with ages >1 Gyr. (Abridged)Comment: 48 pages including 22 pages of figures. Accepted to the Astrophysical Journal Supplements. Some figures slightly degraded to reduce submission siz
    corecore