136 research outputs found

    Spectral variability of a sample of extreme variability quasars and implications for the MgII broad-line region

    Get PDF
    We present new Gemini/GMOS optical spectroscopy of 16 extreme variability quasars (EVQs) that dimmed by more than 1.5 mag in the g band between the Sloan Digital Sky Survey (SDSS) and the Dark Energy Survey epochs (separated by a few years in the quasar rest frame). These EVQs are selected from quasars in the SDSS Stripe 82 region, covering a redshift range of 0.5 < z < 2.1. Nearly half of these EVQs brightened significantly (by more than 0.5 mag in the g band) in a few years after reaching their previous faintest state, and some EVQs showed rapid (non-blazar) variations of greater than 1-2 mag on time-scales of only months. To increase sample statistics, we use a supplemental sample of 33 EVQs with multi-epoch spectra from SDSS that cover the broad Mg II λ2798 line. Leveraging on the large dynamic range in continuum variability between the multi-epoch spectra, we explore the associated variations in the broad Mg II line, whose variability properties have not been well studied before. The broad Mg II flux varies in the same direction as the continuum flux, albeit with a smaller amplitude, which indicates at least some portion of Mg II is reverberating to continuum changes. However, the full width at half-maximum (FWHM) of Mg II does not vary accordingly as continuum changes for most objects in the sample, in contrast to the case of the broad Balmer lines. Using the width of broad Mg II to estimate the black hole mass with single epoch spectra therefore introduces a luminosity-dependent bias.QY and YS acknowledge support from an Alfred P. Sloan Research Fellowship (YS) and NSF grant AST1715579. We thank Patrick Hall, Tamara Davis, Shu Wang, and Hengxiao Guo for useful discussions and suggestions. Funding for the DES Projects has been provided by the U.S. Department of Energy, the U.S. National Science Foundation, the Ministry of Science and Education of Spain, the Science and Technology Facilities Council of the United Kingdom, the Higher Education Funding Council for England, the National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign, the Kavli Institute of Cosmological Physics at the University of Chicago, the Center for Cosmology and Astro-Particle Physics at the Ohio State University, the Mitchell Institute for Fundamental Physics and Astronomy at Texas A&M University, Financiadora de Estudos e Projetos, Fundac¸ao Carlos ˜ Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro, ` Conselho Nacional de Desenvolvimento Cient´ıfico e Tecnologico ´ and the Ministerio da Ci ´ encia, Tecnologia e Inovac ˆ ¸ao, the Deutsche ˜ Forschungsgemeinschaft, and the Collaborating Institutions in the Dark Energy Survey

    Redshift measurement and spectral classification for eBOSS galaxies with the redmonster software

    Get PDF
    We describe the redmonster automated redshift measurement and spectral classification software designed for the extended Baryon Oscillation Spectroscopic Survey (eBOSS) of the Sloan Digital Sky Survey IV (SDSS-IV). We describe the algorithms, the template standard and requirements, and the newly developed galaxy templates to be used on eBOSS spectra. We present results from testing on early data from eBOSS, where we have found a 90.5% automated redshift and spectral classification success rate for the luminous red galaxy sample (redshifts 0.6 ≲ z ≲ 1.0). The redmonster performance meets the eBOSS cosmology requirements for redshift classification and catastrophic failures and represents a significant improvement over the previous pipeline. We describe the empirical processes used to determine the optimum number of additive polynomial terms in our models and an acceptable ΔXr2 threshold for declaring statistical confidence. Statistical errors on redshift measurement due to photon shot noise are assessed, and we find typical values of a few tens of km s-1. An investigation of redshift differences in repeat observations scaled by error estimates yields a distribution with a Gaussian mean and standard deviation of μ ∼ 0.01 and σ ∼ 0.65, respectively, suggesting the reported statistical redshift uncertainties are over-estimated by ∼54%. We assess the effects of object magnitude, signal-to-noise ratio, fiber number, and fiber head location on the pipeline's redshift success rate. Finally, we describe directions of ongoing development.Publisher PDFPeer reviewe

    Primordial non-Gaussianity with Angular correlation function: Integral constraint and validation for DES

    Full text link
    Local primordial non-Gaussianity (PNG) is a promising observable of the underlying physics of inflation, characterised by fNLlocf_{\rm NL}^{\rm loc}. We present the methodology to measure fNLlocf_{\rm NL}^{\rm loc} from the Dark Energy Survey (DES) data using the 2-point angular correlation function (ACF) with scale-dependent bias. One of the focuses of the work is the integral constraint. This condition appears when estimating the mean number density of galaxies from the data and is key in obtaining unbiased fNLlocf_{\rm NL}^{\rm loc} constraints. The methods are analysed for two types of simulations: 246\sim 246 GOLIAT-PNG N-body small area simulations with fNLf_{\rm NL} equal to -100 and 100, and 1952 Gaussian ICE-COLA mocks with fNL=0f_{\rm NL}=0 that follow the DES angular and redshift distribution. We use the ensemble of GOLIAT-PNG mocks to show the importance of the integral constraint when measuring PNG, where we recover the fiducial values of fNLf_{\rm NL} within the 1σ1\sigma when including the integral constraint. In contrast, we found a bias of ΔfNL100\Delta f_{\rm NL}\sim 100 when not including it. For a DES-like scenario, we forecast a bias of ΔfNL23\Delta f_{\rm NL} \sim 23, equivalent to 1.8σ1.8\sigma, when not using the IC for a fiducial value of fNL=100f_{\rm NL}=100. We use the ICE-COLA mocks to validate our analysis in a realistic DES-like setup finding it robust to different analysis choices: best-fit estimator, the effect of IC, BAO damping, covariance, and scale choices. We forecast a measurement of fNLf_{\rm NL} within σ(fNL)=31\sigma(f_{\rm NL})=31 when using the DES-Y3 BAO sample, with the ACF in the 1 deg<θ<20 deg1\ {\rm deg}<\theta<20\ {\rm deg} range.Comment: Version after MNRAS reviewer comments. Improved discussion in Section 7. 16 pages, 11 figure

    The SDSS-IV extended Baryon Oscillation Spectroscopic Survey : Luminous Red Galaxy Target Selection

    Get PDF
    We describe the algorithm used to select the Luminous Red Galaxy (LRG) sample for the extended Baryon Oscillation Spectroscopic Survey (eBOSS) of the Sloan Digital Sky Survey IV (SDSS-IV) using photometric data from both the SDSS and the Wide-Field Infrared Survey Explorer (WISE). LRG targets are required to meet a set of color selection criteria and have z-band and i-band MODEL magnitudes z <19.95 and 19.9 <i < 21.8, respectively. Our algorithm selects roughly 50 LRG targets per square degree, the great majority of which lie in the redshift range 0.6 <z <1.0 (median redshift 0.71). We demonstrate that our methods are highly effective at eliminating stellar contamination and lower-redshift galaxies. We perform a number of tests using spectroscopic data from SDSS-III/BOSS to determine the redshift reliability of our target selection and its ability to meet the science requirements of eBOSS. The SDSS spectra are of high enough signal-to-noise ratio that at least 89% of the target sample yields secure redshift measurements. We also present tests of the uniformity and homogeneity of the sample, demonstrating that it should be clean enough for studies of the large-scale structure of the universe at higher redshifts than SDSS-III/BOSS LRGs reached.Publisher PDFPeer reviewe

    Dust Reverberation Mapping in Distant Quasars from Optical and Mid-Infrared Imaging Surveys

    Full text link
    The size of the dust torus in Active Galactic Nuclei (AGN) and their high-luminosity counterparts, quasars, can be inferred from the time delay between UV/optical accretion disk continuum variability and the response in the mid-infrared (MIR) torus emission. This dust reverberation mapping (RM) technique has been successfully applied to 70\sim 70 z0.3z\lesssim 0.3 AGN and quasars. Here we present first results of our dust RM program for distant quasars covered in the SDSS Stripe 82 region combining 20\sim 20-yr ground-based optical light curves with 10-yr MIR light curves from the WISE satellite. We measure a high-fidelity lag between W1-band (3.4 μ\mum) and gg band for 587 quasars over 0.3z20.3\lesssim z\lesssim 2 (\left\sim 0.8) and two orders of magnitude in quasar luminosity. They tightly follow (intrinsic scatter 0.17\sim 0.17 dex in lag) the IR lag-luminosity relation observed for z<0.3z<0.3 AGN, revealing a remarkable size-luminosity relation for the dust torus over more than four decades in AGN luminosity, with little dependence on additional quasar properties such as Eddington ratio and variability amplitude. This study motivates further investigations in the utility of dust RM for cosmology, and strongly endorses a compelling science case for the combined 10-yr Vera C. Rubin Observatory Legacy Survey of Space and Time (optical) and 5-yr Nancy Grace Roman Space Telescope 2μ\mum light curves in a deep survey for low-redshift AGN dust RM with much lower luminosities and shorter, measurable IR lags. The compiled optical and MIR light curves for 7,384 quasars in our parent sample are made public with this work.Comment: Accepted for publication in Ap

    The Phoenix stream : a cold stream in the southern hemisphere

    Get PDF
    We report the discovery of a stellar stream in the Dark Energy Survey Year 1 (Y1A1) data. The discovery was made through simple color–magnitude filters and visual inspection of the Y1A1 data. We refer to this new object as the Phoenix stream, after its resident constellation. After subtraction of the background stellar population we detect a clear signal of a simple stellar population. By fitting the ridge line of the stream in color–magnitude space, we find that a stellar population with age τ=11.5±0.5 Gyr and [Fe/H]<−1.6, located 17.5±0.9 kpc from the Sun, gives an adequate description of the stream stellar population. The stream is detected over an extension of 8°.1 (2.5 kpc) and has a width of ∼54 pc assuming a Gaussian profile, indicating that a globular cluster (GC) is a probable progenitor. There is no known GC within 5 kpc that is compatible with being the progenitor of the stream, assuming that the stream traces its orbit. We examined overdensities (ODs) along the stream, however, no obvious counterpart-bound stellar system is visible in the coadded images. We also find ODs along the stream that appear to be symmetrically distributed—consistent with the epicyclic OD scenario for the formation of cold streams—as well as a misalignment between the northern and southern part of stream. Despite the close proximity we find no evidence that this stream and the halo cluster NGC 1261 have a common accretion origin linked to the recently found EriPhe OD

    An r -process enhanced star in the dwarf galaxy Tucana III

    Get PDF
    Chemically peculiar stars in dwarf galaxies provide a window for exploring the birth environment of stars with varying chemical enrichment. We present a chemical abundance analysis of the brightest star in the newly discovered ultra-faint dwarf galaxy candidate Tucana III. Because it is particularly bright for a star in an ultra-faint Milky Way (MW) satellite, we are able to measure the abundance of 28 elements, including 13 neutron-capture species. This star, DES J235532.66−593114.9 (DES J235532), shows a mild enhancement in neutron-capture elements associated with the r-process and can be classified as an r-I star. DES J235532 is the first r-I star to be discovered in an ultra-faint satellite, and Tuc III is the second extremely low-luminosity system found to contain rprocess enriched material, after Reticulum II. Comparison of the abundance pattern of DES J235532 with r-I and r-II stars found in other dwarf galaxies and in the MW halo suggests a common astrophysical origin for the neutron-capture elements seen in all r-process enhanced stars. We explore both internal and external scenarios for the r-process enrichment of Tuc III and show that with abundance patterns for additional stars, it should be possible to distinguish between them
    corecore