1,219 research outputs found

    Seeds, saplings and gaps: size matters. A study in the tropical rain forest of Guyana

    Get PDF
    Forest management for timber exploitation is dependent on the succesful regeneration of commercial timber species in gaps. This study evaluated the influence of gap size and seed mass on the processes of seedling recruitment, establishment, growth and survival in logged over and mature forest areas over four years (1996-1999) in the tropical rain forest in Guyana. It generates insight into the potential impacts of logging on forest species diversity, and indicates necessary management procedures that may maximise gap-phase regeneration of desired species

    The importance of seed mass for early regeneration in tropical forest: a review

    Get PDF
    Seed mass is an important component of the shade tolerance of rain forest tree species. Using a metaanalysis this article evaluates till what extent seed mass affects the survival, initial size, and growth of seedlings in light environments that are typical of forest gaps and understor

    Fluctuation-response relation in turbulent systems

    Full text link
    We address the problem of measuring time-properties of Response Functions (Green functions) in Gaussian models (Orszag-McLaughin) and strongly non-Gaussian models (shell models for turbulence). We introduce the concept of {\it halving time statistics} to have a statistically stable tool to quantify the time decay of Response Functions and Generalized Response Functions of high order. We show numerically that in shell models for three dimensional turbulence Response Functions are inertial range quantities. This is a strong indication that the invariant measure describing the shell-velocity fluctuations is characterized by short range interactions between neighboring shells

    Electron Spin Relaxation in a Semiconductor Quantum Well

    Full text link
    A fully microscopic theory of electron spin relaxation by the D'yakonov-Perel' type spin-orbit coupling is developed for a semiconductor quantum well with a magnetic field applied in the growth direction of the well. We derive the Bloch equations for an electron spin in the well and define microscopic expressions for the spin relaxation times. The dependencies of the electron spin relaxation rate on the lowest quantum well subband energy, magnetic field and temperature are analyzed.Comment: Revised version as will appear in Physical Review

    Nanostructural characterization of geopolymers by advanced beamline techniques

    Get PDF
    This paper presents the outcomes of a series of beamline-based studies, the results of which are combined to provide a more detailed multiscale understanding of the structure and chemistry of geopolymer binders. The range of beamline-based characterization techniques which have been applied to the study of geopolymer binders is increasing rapidly; although no single technique can provide a holistic view of binder structure across all the length scales which are of importance in determining strength development and durability, the synergy achievable through the combination of multiple beamline techniques is leading to rapid advances in knowledge in this area. Studies based around beamline infrared and X-ray fluorescence microscopy, in situ and ex situ neutron pair distribution function analysis, and nano- and micro-tomography, are combined to provide an understanding of geopolymer gel chemistry, nano- and microstructure in two and three dimensions, and the influences of seeded nucleation and precursor chemistry in these key areas. The application of advanced characterization methods in recent years has brought the understanding of geopolymer chemistry from a point, not more than a decade ago, when the analysis of the detailed chemistry of the aluminosilicate binder gel was considered intractable due to its disordered (“X-ray amorphous”) nature, to the present day where the influence of key compositional parameters on nanostructure is well understood, and both gel structure and reaction kinetics can be manipulated through methods including seeding, temperature variation, and careful mix design. This paper therefore provides a review outlining the value of nanotechnology – and particularly nanostructural characterization – in the development and optimization of a new class of environmentally beneficial cements and concretes. Key engineering parameters, in particularly strength development and permeability, are determined at a nanostructural level, and so it is essential that gel structures can be analyzed and manipulated at this level; beamline-based characterization techniques are critical in providing the ability to achieve this goal

    A molecular absorption line survey toward the AGN of Hydra-A

    Get PDF
    We present Atacama Large Millimeter/submillimeter Array observations of the brightest cluster galaxy Hydra-A, a nearby (z = 0.054) giant elliptical galaxy with powerful and extended radio jets. The observations reveal CO(1-0), CO(2-1), 13CO(2-1), CN(2-1), SiO(5-4), HCO+(1-0), HCO+(2-1), HCN(1-0), HCN(2-1), HNC(1-0) and H2CO(3-2) absorption lines against the galaxy’s bright and compact active galactic nucleus. These absorption features are due to at least 12 individual molecular clouds which lie close to the centre of the galaxy and have velocities of approximately −50 to +10 km s−1 relative to its recession velocity, where positive values correspond to inward motion. The absorption profiles are evidence of a clumpy interstellar medium within brightest cluster galaxies composed of clouds with similar column densities, velocity dispersions and excitation temperatures to those found at radii of several kpc in the Milky Way. We also show potential variation in a ∌10 km s−1 wide section of the absorption profile over a two year timescale, most likely caused by relativistic motions in the hot spots of the continuum source which change the background illumination of the absorbing clouds

    A novel, high-rate, anaerobic digester to treat high-solids waste ensuring reuse and good sanitation planning

    Get PDF
    A consortium of UK universities is working on developing a novel anaerobic digester that will treat pit latrine waste and transform it into a safe and valuable product. Physico-chemical characteristics of fresh human waste and pit latrine sludge are being determined. This is informing the development of a bioreactor containing biofilms, or slimes, of several microbial ‘trophic’ groups growing preferentially on distinct surfaces and materials. The ecologically-engineered bioreactor design will optimise the efficiency of the treatment and underpin successful digestion of high-solids waste. The potential use of the digestate will be reused in agriculture to recycle nutrients and prevent environmental, and watercourse pollution. Attitudes to sanitation, as well as to resource recovery from, and reuse of, waste, are being investigated so the participatory sanitation planning process can work effectively

    Breathing Current Domains in Globally Coupled Electrochemical Systems: A Comparison with a Semiconductor Model

    Full text link
    Spatio-temporal bifurcations and complex dynamics in globally coupled intrinsically bistable electrochemical systems with an S-shaped current-voltage characteristic under galvanostatic control are studied theoretically on a one-dimensional domain. The results are compared with the dynamics and the bifurcation scenarios occurring in a closely related model which describes pattern formation in semiconductors. Under galvanostatic control both systems are unstable with respect to the formation of stationary large amplitude current domains. The current domains as well as the homogeneous steady state exhibit oscillatory instabilities for slow dynamics of the potential drop across the double layer, or across the semiconductor device, respectively. The interplay of the different instabilities leads to complex spatio-temporal behavior. We find breathing current domains and chaotic spatio-temporal dynamics in the electrochemical system. Comparing these findings with the results obtained earlier for the semiconductor system, we outline bifurcation scenarios leading to complex dynamics in globally coupled bistable systems with subcritical spatial bifurcations.Comment: 13 pages, 11 figures, 70 references, RevTex4 accepted by PRE http://pre.aps.or

    Semiparametric theory and empirical processes in causal inference

    Full text link
    In this paper we review important aspects of semiparametric theory and empirical processes that arise in causal inference problems. We begin with a brief introduction to the general problem of causal inference, and go on to discuss estimation and inference for causal effects under semiparametric models, which allow parts of the data-generating process to be unrestricted if they are not of particular interest (i.e., nuisance functions). These models are very useful in causal problems because the outcome process is often complex and difficult to model, and there may only be information available about the treatment process (at best). Semiparametric theory gives a framework for benchmarking efficiency and constructing estimators in such settings. In the second part of the paper we discuss empirical process theory, which provides powerful tools for understanding the asymptotic behavior of semiparametric estimators that depend on flexible nonparametric estimators of nuisance functions. These tools are crucial for incorporating machine learning and other modern methods into causal inference analyses. We conclude by examining related extensions and future directions for work in semiparametric causal inference

    E-menus – Managing Choice Options in Hospital Foodservice

    Get PDF
    This study examined an initiative in which e-menus and touch screen technology were piloted in a large UK hospital, with the aim of improving food service and satisfaction. Current practice often means that patients may receive the wrong meals, resulting in dissatisfaction and plate waste. An alternative approach is for patients to use electronic menus (e-menus) to make their order, using touch screen technology on the TVs, which in many hospitals are provided at every bedside. A pre-test, post-test questionnaire, which elicited scaled responses and written comments (n=90) was administered to a comparable group of patients. Results from both types of data suggested that most patients used e-menus effectively, although for older patients, it was more challenging. However the biggest difference in the effectiveness of the new technology was between the wards, which also showed substantial differences in service standards. It is concluded that e-menus are an effective way of imparting information about the food, and that they tend to produce greater satisfaction in recipients. However, the results suggest that more training of foodservice staff will be required in order to make the most of initiatives of this kind
    • 

    corecore