199 research outputs found

    Identification of gene polymorphisms of human DNA topoisomerase I in the National Cancer Institute panel of human tumour cell lines

    Get PDF
    Topoisomerase 1 (Top1), a nuclear enzyme involved in DNA relaxation, is the target of several anticancer drugs. TOP1 mutations occur in camptothecin-resistant tumour cell lines. We explored, in the NCI panel of 60 human tumour cell lines, whether polymorphic variations in the TOP1 gene could explain differences in drug sensitivity. The 21 exons of the gene were fully studied as well as five intronic domains that had previously been shown to harbour single nucleotide polymorphisms (SNPs) or mutations. PCR products covering the whole exonic sequences or the relevant intronic domains were subjected to denaturing high-performance liquid chromatography. Nucleotide variations were then determined by sequencing. Discrimination between intronic common and variant homozygous samples was performed using a restriction fragment length polymorphism technique. Only one exonic mutation was detected, at the heterozygous state; it occurs in exon 19 of a colon cancer cell line (HCT-15) and consists of a G>A transition at position 75, resulting in a Met675Ile change. The intronic sequences studied harboured the SNPs expected with allelic frequencies between 20 and 40%. Three major haplotypes, generating 92% of the 10 genotypes encountered, were defined as containing none of the intronic SNPs, or three of them, or all of them. No significant relationship was evidenced between Top1 expression and the TOP1 polymorphisms studied. However, when comparing the cytotoxicity of 138 drugs as a function of the genotypes, several drug groups, namely Top1 inhibitors, antifolates and taxanes, had significantly different IC50s as a function of the distribution of the intronic SNPs of the TOP1 gene

    Melanoma NOS1 expression promotes dysfunctional IFN signaling.

    Get PDF
    In multiple forms of cancer, constitutive activation of type I IFN signaling is a critical consequence of immune surveillance against cancer; however, PBMCs isolated from cancer patients exhibit depressed STAT1 phosphorylation in response to IFN-α, suggesting IFN signaling dysfunction. Here, we demonstrated in a coculture system that melanoma cells differentially impairs the IFN-α response in PBMCs and that the inhibitory potential of a particular melanoma cell correlates with NOS1 expression. Comparison of gene transcription and array comparative genomic hybridization (aCGH) between melanoma cells from different patients indicated that suppression of IFN-α signaling correlates with an amplification of the NOS1 locus within segment 12q22-24. Evaluation of NOS1 levels in melanomas and IFN responsiveness of purified PBMCs from patients indicated a negative correlation between NOS1 expression in melanomas and the responsiveness of PBMCs to IFN-α. Furthermore, in an explorative study, NOS1 expression in melanoma metastases was negatively associated with patient response to adoptive T cell therapy. This study provides a link between cancer cell phenotype and IFN signal dysfunction in circulating immune cells

    Dielectrophoresis has Broad Applicability to Marker-Free Isolation of Tumor Cells from Blood by Microfluidic Systems

    Get PDF
    The number of circulating tumor cells (CTCs) found in blood is known to be a prognostic marker for recurrence of primary tumors, however, most current methods for isolating CTCs rely on cell surface markers that are not universally expressed by CTCs. Dielectrophoresis (DEP) can discriminate and manipulate cancer cells in microfluidic systems and has been proposed as a molecular marker-independent approach for isolating CTCs from blood. To investigate the potential applicability of DEP to different cancer types, the dielectric and density properties of the NCI-60 panel of tumor cell types have been measured by dielectrophoretic field-flow fractionation (DEP-FFF) and compared with like properties of the subpopulations of normal peripheral blood cells. We show that all of the NCI-60 cell types, regardless of tissue of origin, exhibit dielectric properties that facilitate their isolation from blood by DEP. Cell types derived from solid tumors that grew in adherent cultures exhibited dielectric properties that were strikingly different from those of peripheral blood cell subpopulations while leukemia-derived lines that grew in non-adherent cultures exhibited dielectric properties that were closer to those of peripheral blood cell types. Our results suggest that DEP methods have wide applicability for the surface-marker independent isolation of viable CTCs from blood as well as for the concentration of leukemia cells from blood. (C) 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4774307]Cancer Prevention and Research Institute of Texas (CPRIT) RP100934Kleberg Center for Molecular MarkersEntertainment Industry Foundation SU2C-AACR-DT0209NCI CA016672Biomedical Engineerin

    Longitudinal Study of Recurrent Metastatic Melanoma Cell Lines Underscores the Individuality of Cancer Biology.

    Get PDF
    Recurrent metastatic melanoma provides a unique opportunity to analyze disease evolution in metastatic cancer. Here, we followed up eight patients with an unusually prolonged history of metastatic melanoma, who developed a total of 26 recurrences over several years. Cell lines derived from each metastasis were analyzed by comparative genomic hybridization and global transcript analysis. We observed that conserved, patient-specific characteristics remain stable in recurrent metastatic melanoma even after years and several recurrences. Differences among individual patients exceeded within-patient lesion variability, both at the DNA copy number (P<0.001) and RNA gene expression level (P<0.001). Conserved patient-specific traits included expression of several cancer/testis antigens and the c-kit proto-oncogene throughout multiple recurrences. Interestingly, subsequent recurrences of different patients did not display consistent or convergent changes toward a more aggressive disease phenotype. Finally, sequential recurrences of the same patient did not descend progressively from each other, as irreversible mutations such as homozygous deletions were frequently not inherited from previous metastases. This study suggests that the late evolution of metastatic melanoma, which markedly turns an indolent disease into a lethal phase, is prone to preserve case-specific traits over multiple recurrences and occurs through a series of random events that do not follow a consistent stepwise process.Journal of Investigative Dermatology advance online publication, 2 January 2014; doi:10.1038/jid.2013.495

    Permissivity of the NCI-60 cancer cell lines to oncolytic Vaccinia Virus GLV-1h68

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Oncolytic viral therapy represents an alternative therapeutic strategy for the treatment of cancer. We previously described GLV-1h68, a modified Vaccinia Virus with exclusive tropism for tumor cells, and we observed a cell line-specific relationship between the ability of GLV-1h68 to replicate in vitro and its ability to colonize and eliminate tumor in vivo.</p> <p>Methods</p> <p>In the current study we surveyed the in vitro permissivity to GLV-1h68 replication of the NCI-60 panel of cell lines. Selected cell lines were also tested for permissivity to another Vaccinia Virus and a vesicular stomatitis virus (VSV) strain. In order to identify correlates of permissity to viral infection, we measured transcriptional profiles of the cell lines prior infection.</p> <p>Results</p> <p>We observed highly heterogeneous permissivity to VACV infection amongst the cell lines. The heterogeneity of permissivity was independent of tissue with the exception of B cell derivation. Cell lines were also tested for permissivity to another Vaccinia Virus and a vesicular stomatitis virus (VSV) strain and a significant correlation was found suggesting a common permissive phenotype. While no clear transcriptional pattern could be identified as predictor of permissivity to infection, some associations were observed suggesting multifactorial basis permissivity to viral infection.</p> <p>Conclusions</p> <p>Our findings have implications for the design of oncolytic therapies for cancer and offer insights into the nature of permissivity of tumor cells to viral infection.</p

    Lipoprotein lipase is frequently overexpressed or translocated in cervical squamous cell carcinoma and promotes invasiveness through the non-catalytic C terminus.

    Get PDF
    BACKGROUND: We studied the biological significance of genes involved in a novel t(8;12)(p21.3;p13.31) reciprocal translocation identified in cervical squamous cell carcinoma (SCC) cells. METHODS: The rearranged genes were identified by breakpoint mapping, long-range PCR and sequencing. We investigated gene expression in vivo using reverse-transcription PCR and tissue microarrays, and studied the phenotypic consequences of forced gene overexpression. RESULTS: The rearrangement involved lipoprotein lipase (LPL) and peroxisome biogenesis factor-5 (PEX5). Whereas LPL-PEX5 was expressed at low levels and contained a premature stop codon, PEX5-LPL was highly expressed and encoded a full-length chimeric protein (including the majority of the LPL coding region). Consistent with these findings, PEX5 was constitutively expressed in normal cervical squamous cells, whereas LPL expression was negligible. The LPL gene was rearranged in 1 out of 151 cervical SCCs, whereas wild-type LPL overexpression was common, being detected in 10 out of 28 tissue samples and 4 out of 10 cell lines. Forced overexpression of wild-type LPL and PEX5-LPL fusion transcripts resulted in increased invasiveness in cervical SCC cells, attributable to the C-terminal non-catalytic domain of LPL, which was retained in the fusion transcripts. CONCLUSION: This is the first demonstration of an expressed fusion gene in cervical SCC. Overexpressed wild-type or translocated LPL is a candidate for targeted therapy

    The Human Lung Adenocarcinoma Cell Line EKVX Produces an Infectious Xenotropic Murine Leukemia Virus

    Get PDF
    The cell lines of the NCI-60 panel represent different cancer types and have been widely utilized for drug screening and molecular target identification. Screening these cell lines for envelope proteins or gene sequences related to xenotropic murine leukemia viruses (X-MLVs) revealed that one cell line, EKVX, was a candidate for production of an infectious gammaretrovirus. The presence of a retrovirus infectious to human cells was confirmed by the cell-free transmission of infection to the human prostate cancer cell line LNCaP. Amplification and sequencing of additional proviral sequences from EKVX confirmed a high degree of similarity to X-MLV. The cell line EKVX was established following passage of the original tumor cells through nude mice, providing a possible source of the X-MLV found in the EKVX cells
    corecore