247 research outputs found

    The XMM Cluster Survey: Evidence for energy injection at high redshift from evolution of the X-ray luminosity-temperature relation

    Get PDF
    We measure the evolution of the X-ray luminosity-temperature (L_X-T) relation since z~1.5 using a sample of 211 serendipitously detected galaxy clusters with spectroscopic redshifts drawn from the XMM Cluster Survey first data release (XCS-DR1). This is the first study spanning this redshift range using a single, large, homogeneous cluster sample. Using an orthogonal regression technique, we find no evidence for evolution in the slope or intrinsic scatter of the relation since z~1.5, finding both to be consistent with previous measurements at z~0.1. However, the normalisation is seen to evolve negatively with respect to the self-similar expectation: we find E(z)^{-1} L_X = 10^{44.67 +/- 0.09} (T/5)^{3.04 +/- 0.16} (1+z)^{-1.5 +/- 0.5}, which is within 2 sigma of the zero evolution case. We see milder, but still negative, evolution with respect to self-similar when using a bisector regression technique. We compare our results to numerical simulations, where we fit simulated cluster samples using the same methods used on the XCS data. Our data favour models in which the majority of the excess entropy required to explain the slope of the L_X-T relation is injected at high redshift. Simulations in which AGN feedback is implemented using prescriptions from current semi-analytic galaxy formation models predict positive evolution of the normalisation, and differ from our data at more than 5 sigma. This suggests that more efficient feedback at high redshift may be needed in these models.Comment: Accepted for publication in MNRAS; 12 pages, 6 figures; added references to match published versio

    Improving the quality of toxicology and environmental health systematic reviews:What journal editors can do

    Get PDF
    Systematic reviews are fast increasing in prevalence in the toxicology and environmental health literature. However, how well these complex research projects are being conducted and reported is unclear. Since editors have an essential role in ensuring the scientific quality of manuscripts being published in their journals, a workshop was convened where editors, systematic review practitioners, and research quality control experts could discuss what editors can do to ensure the systematic reviews they publish are of sufficient scientific quality. Interventions were explored along four themes: setting standards; reviewing protocols; optimizing editorial workflows; and measuring the effectiveness of editorial interventions. In total, 58 editorial interventions were proposed. Of these, 26 were shortlisted for being potentially effective, and 5 were prioritized as short-term actions that editors could relatively easily take to improve the quality of published systematic reviews. Recent progress in improving systematic reviews is summarized, and outstanding challenges to further progress are highlighted

    Chimeric Antigen Receptor Signaling Domains Differentially Regulate Proliferation and Native T Cell Receptor Function in Virus-Specific T Cells

    Get PDF
    The efficacy of T cells expressing chimeric antigen receptors (CARs) for solid tumors has been limited by insufficient CAR T cell expansion and persistence. The use of virus-specific T cells (VSTs) as carriers for CARs may overcome this limitation since CAR-VSTs can be boosted by viral vaccines or oncolytic viruses. However, there is limited understanding of the optimal combination of endodomains and their influence on the native T cell receptor (TCR) in VSTs. We therefore compared the function of GD2.CARs expressing the TCR zeta chain (ζ) alone or combined with endodomains from CD28 and 4-1BB in varicella zoster virus-specific (VZV) T cells. VZVSTs expressing GD2-CARs recognized VZV-derived peptides and killed GD2-expressing tumor cells. However, after repeated stimulation through their native TCR, the expansion of GD2-CAR.CD28ζ-VZVSTs was 3.3-fold greater (p < 0.001) than non-transduced VZVSTs, whereas GD2-CARζ- and GD2-CAR.41BBζ inhibited VZVST expansion (p < 0.01). Compared to control VZVSTs, GD2-CAR.ζ VZVSTs showed a greater frequency of apoptotic (p < 0.01) T cells, whereas prolonged downregulation of the native αβ TCR was observed in GD2-CAR.41BBζ VZVSTs (p < 0.001). We confirmed that CD28ζ can best maintain TCR function by expressing GD2.CARs in Epstein-Barr virus-specific T cells and CD19-CARs in VZVSTs. In response to CAR stimulation VSTs with CD28ζ endodomains also showed the greatest expansion (6 fold > GD2-CAR.41BBζ VZVSTs (p < 0.001), however anti-tumor efficacy was superior in GD2-CAR.41BBζ-VZVSTs. These findings demonstrate that CAR signaling domains can enhance or diminish the function of the native TCR and indicate that only CD28ζ may preserve the function of the native TCR in tonically signaling CAR-VSTs

    Evolution of compound eye morphology underlies differences in vision between closely related Drosophila species

    Get PDF
    Background: Insects have evolved complex visual systems and display an astonishing range of adaptations for diverse ecological niches. Species of Drosophila melanogaster subgroup exhibit extensive intra- and interspecific differences in compound eye size. These differences provide an excellent opportunity to better understand variation in insect eye structure and the impact on vision. Here we further explored the difference in eye size between D. mauritiana and its sibling species D. simulans. Results: We confirmed that D. mauritiana have rapidly evolved larger eyes as a result of more and wider ommatidia than D. simulans since they recently diverged approximately 240,000 years ago. The functional impact of eye size, and specifically ommatidia size, is often only estimated based on the rigid surface morphology of the compound eye. Therefore, we used 3D synchrotron radiation tomography to measure optical parameters in 3D, predict optical capacity, and compare the modelled vision to in vivo optomotor responses. Our optical models predicted higher contrast sensitivity for D. mauritiana, which we verified by presenting sinusoidal gratings to tethered flies in a flight arena. Similarly, we confirmed the higher spatial acuity predicted for Drosophila simulans with smaller ommatidia and found evidence for higher temporal resolution. Conclusions: Our study demonstrates that even subtle differences in ommatidia size between closely related Drosophila species can impact the vision of these insects. Therefore, further comparative studies of intra- and interspecific variation in eye morphology and the consequences for vision among other Drosophila species, other dipterans and other insects are needed to better understand compound eye structure–function and how the diversification of eye size, shape, and function has helped insects to adapt to the vast range of ecological niches

    Recommendations for determining HPV status in patients with oropharyngeal cancers under TNM8 guidelines : a two-tier approach

    Get PDF
    ACKNOWLEDGEMENTS The funders had no role in study design, collection, data analysis or interpretation of the data. This work received funding from the Medical Research Council (D.Mc.C. and J.J.), the Health and Social Care Research and Development Division of the Northern Ireland Public Health Agency (D.M.c.C., J.J., M.Mo.), the Wellcome Trust through the Wellcome-FDS Research Training Fellowship, the Faculty of Dental Surgery of the Royal College of Surgeons of England (A.G.S.) and GlaxoSmithKline Ltd (T.J.). The Northern Ireland OPSCC TMAs used in this research were received from the Northern Ireland Biobank which has received funds from Health and Social Care Research and Development Division of the Public Health Agency in Northern Ireland and the Friends of the Cancer Centre. The Northern Ireland Cancer Registry who receives funding from the Northern Ireland Public Health Agency carried out collection of clinical data for the Northern Ireland OPSCC patients. The Faculty of Dental Surgery of the Royal College of Surgeons of England and the Liverpool Bio-innovation Hub Biobank carried out collection of clinical data for the Liverpool OPSCC patients.Peer reviewedPublisher PD

    The XMM Cluster Survey: testing chameleon gravity using the profiles of clusters

    Get PDF
    The chameleon gravity model postulates the existence of a scalar field that couples with matter to mediate a fifth force. If it exists, this fifth force would influence the hot X-ray emitting gas filling the potential wells of galaxy clusters. However, it would not influence the clusters weak lensing signal. Therefore, by comparing X-ray and weak lensing profiles, one can place upper limits on the strength of a fifth force. This technique has been attempted before using a single, nearby cluster (Coma, z = 0.02). Here we apply the technique to the stacked profiles of 58 clusters at higher redshifts (0.1 < z < 1.2), including 12 new to the literature, using X-ray data from the XMM Cluster Survey and weak lensing data from the Canada-France-Hawaii-Telescope Lensing Survey. Using a multiparameter Markov chain Monte Carlo analysis, we constrain the two chameleon gravity parameters (beta and phi∞). Our fits are consistent with general relativity, not requiring a fifth force. In the special case of f(R) gravity (where beta = &surd;{1/6}), we set an upper limit on the background field amplitude today of |fR0| < 6 × 10-5 (95 per cent CL). This is one of the strongest constraints to date on |fR0| on cosmological scales. We hope to improve this constraint in future by extending the study to hundreds of clusters using data from the Dark Energy Survey

    The XMM Cluster Survey: The interplay between the brightest cluster galaxy and the intra-cluster medium via AGN feedback

    Get PDF
    Using a sample of 123 X-ray clusters and groups drawn from the XMM-Cluster Survey first data release, we investigate the interplay between the brightest cluster galaxy (BCG), its black hole, and the intra-cluster/group medium (ICM). It appears that for groups and clusters with a BCG likely to host significant AGN feedback, gas cooling dominates in those with Tx > 2 keV while AGN feedback dominates below. This may be understood through the sub-unity exponent found in the scaling relation we derive between the BCG mass and cluster mass over the halo mass range 10^13 < M500 < 10^15Msol and the lack of correlation between radio luminosity and cluster mass, such that BCG AGN in groups can have relatively more energetic influence on the ICM. The Lx - Tx relation for systems with the most massive BCGs, or those with BCGs co-located with the peak of the ICM emission, is steeper than that for those with the least massive and most offset, which instead follows self-similarity. This is evidence that a combination of central gas cooling and powerful, well fuelled AGN causes the departure of the ICM from pure gravitational heating, with the steepened relation crossing self-similarity at Tx = 2 keV. Importantly, regardless of their black hole mass, BCGs are more likely to host radio-loud AGN if they are in a massive cluster (Tx > 2 keV) and again co-located with an effective fuel supply of dense, cooling gas. This demonstrates that the most massive black holes appear to know more about their host cluster than they do about their host galaxy. The results lead us to propose a physically motivated, empirical definition of 'cluster' and 'group', delineated at 2 keV.Comment: Accepted for publication in MNRAS - replaced to match corrected proo
    corecore