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Abstract 

Insects have evolved complex visual systems and display an astonishing range of adaptations 

for diverse ecological niches. Differences in eye size within and between Drosophila species 

provide the opportunity to study the impact of eye structure on vision. Here we further explored 

differences in D. mauritiana and its sibling species D. simulans and confirmed that D. 

mauritiana have rapidly evolved larger eyes as a result of more and wider ommatidia than D. 

simulans since their recent common ancestor. The functional impact of eye size, and 

specifically ommatidia size, is often only estimated based on the rigid surface morphology of 

the compound eye. Therefore, we used 3D synchrotron radiation tomography to measure 

optical parameters in 3D, predict optical capacity, and compare the modelled vision to in vivo 

optomotor responses. Our optical models predicted higher contrast sensitivity for D. 

mauritiana, which we verified by presenting sinusoidal gratings to tethered flies in a flight 

arena. Similarly, we confirmed the higher spatial acuity predicted for Drosophila simulans with 

smaller ommatidia and found evidence for higher temporal resolution.  

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 16, 2023. ; https://doi.org/10.1101/2023.07.16.549164doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.16.549164
http://creativecommons.org/licenses/by-nd/4.0/


Introduction 

Insect compound eyes exhibit remarkable variation in size as a result of differences in the 

number and diameter of the individual subunits, known as ommatidia. For example, the 

silverfish Tricholepidion gertschi has ~40 ommatidia (Blanke et al., 2014)  whereas dragon- 

and damselflies (Odonata), sport up to 30,000 ommatidia (Sherk, 1978). Differences in eye 

size as well as the number, size, and angles between facets allow different visual behaviours, 

lifestyles and adaptation to a large range of environments (e.g. Land, 1999, 2012; Land et al., 

1999; Greiner, Ribi and Warrant, 2004; Meyer-Rochow and Mishra, 2007; Gonzalez-Bellido, 

Wardill and Juusola, 2011; Nilsson, 2013; Tocco, Dacke and Byrne, 2019; Meece, Rathore 

and Buschbeck, 2021; Johnson and Rutowski, 2022; Pichaud and Casares, 2022). How these 

diverse eyes of insects have evolved and to what extent even small changes in the optics 

affect vision is still not well understood. Investigating and comparing natural variation in eye 

size and composition, and its impact on optical capacity within and between closely related 

species can provide valuable insight into the functional evolution of the insect eye. Generally, 

wider ommatidia can harvest more light, allowing greater sensitivity, while more ommatidia 

and narrower inter-ommatidial angles can provide greater acuity (Snyder, Stavenga and 

Laughlin, 1977; Land, 1997; Land and Nilsson, 2012). Ommatidia diameter and number 

therefore represent a trade-off that is optimised for the specific visual needs of each insect 

species, strain, sex or morph.  

Several studies have reported the extensive variation in ommatidia number, ommatidia 

diameter, and overall eye size within and between species of Drosophila (Posnien et al., 2012; 

Arif et al., 2013; Hilbrant et al., 2014; Keesey et al., 2019; Ramaekers et al., 2019; Gaspar et 

al., 2020). There is evidence that some of this is the result of trade-off between eye size and 

antennal size and, by extension, the visual and olfactory systems, as well as overall head 

capsule size (Keesey et al., 2019; Ramaekers et al., 2019; Özer and Carle, 2020). The genetic 

basis of these differences in eye size is complex but, in some cases, the underlying genes 

and developmental mechanisms have been characterised (Arif et al., 2013; Norry and Gomez, 

2017; Ramaekers et al., 2019; Reis et al., 2020; Buchberger et al., 2021; Torres-Oliva et al., 

2021). We previously found that one D. mauritiana strain has larger eyes than its sibling 

species D. simulans as a result of wider ommatidia, potentially caused by differential 

expression of the transcription factor Orthodenticle (Otd) during eye development (Arif et al., 

2013; Gaspar et al., 2020; Torres-Oliva et al., 2021). The larger eyes of D. mauritiana with 

respect to D. simulans are also associated with reciprocal changes in the distance between 

the eyes (face width), but the antennae were not examined (Arif et al., 2013).  

Optical parameters can also vary within eyes: killer flies, including Coenosia attenuata, 

have evolved specialised wide frontal ommatidia with small interommatidial angles for diurnal 
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aerial hunting (Gonzalez-Bellido, Wardill and Juusola, 2011), and males of many families of 

dipterans have enlarged ommatidia in the dorso-frontal region of the eye that allows them to 

detect and pursue females in flight (Perry and Desplan, 2016). In D. mauritiana and D. 

simulans also exhibit structural variation across the eye, with significantly wider anterior frontal 

ommatidia than central and posterior ommatidia in both males and females (Torres-Oliva et 

al., 2021). 

However, to fully understand the functional impact of eye size variation within and 

between Drosophila species it is crucial to test predictions based on eye morphology in vivo. 

Here we further explored the variation in ommatidia number and diameter that contribute to 

eye size differences in males and females among different D. mauritiana and D. simulans 

strains. We used synchrotron radiation microtomography to obtain 3D information of optical 

parameters in focal strains of these two species and tested predicted differences in their vision 

via optomotor responses in a virtual reality flight simulator in vivo. 

 

Results 

Ommatidia number and size vary within and between closely related Drosophila 
species. 
The overall eye size of compound eyes is determined by ommatidia number and size (here 

reflected by facet area). While D. mauritiana generally have larger eyes than the closely 

related species D. simulans (Hämmerle and Ferrús, 2003; Posnien et al., 2012; Gaspar et al., 

2020), it remains unclear if this difference is always caused by one or both parameters. We 

analysed total eye area, central facet area and ommatidia number from scanning electron 

microscopy images in multiple strains of both species and found a negative correlation 

between central ommatidia facet size and number in D. simulans (Fig. 1, Suppl. Fig. 1) 

suggesting a potential trade-off between these characteristics. In contrast, D. mauritiana had 

generally wider and more numerous ommatidia and consequently overall larger eyes than D. 

simulans and the trade-off seen in D. simulans was absent in females. Interestingly, D. 

mauritiana males showed a positive correlation between ommatidia number and facet size 

and (Fig. 1, Suppl. Fig. 1).  
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Figure 1: Variation in eye size, ommatidia number and ommatidia size across closely related D. 
mauritiana and D. simulans. Average eye size (mm2, circle area) of D. simulans (blue) and D. mauritiana (red) 
strains (circle labels) plotted against ommatidia number and ommatidia facet area (in µm2) for females (a) and 
males (b). D. mauritiana generally have larger eyes with more and larger ommatidia compared to D. simulans. 
Eye size was measured from side view scanning electron micrographs of single eyes. 

 

To test whether larger eyes of D. mauritiana were an effect of overall larger body size we also 

measured second-leg tibia length, which have been previously used as a proxy for body size 

(Sokoloff, 1966; Posnien et al., 2012; Krause et al., 2019) and the length of the L3 wing vein 

as an estimate of overall wing size (Lack et al., 2016). The tibia of D. mauritiana were not 

generally larger than tibia of D. simulans (Suppl. Fig. 2), suggesting the increase in eye size 

has evolved independently of body size (Hämmerle and Ferrús, 2003; Posnien et al., 2012; 

Arif et al., 2013). Consistent with this, tibia size was only positively correlated with eye size in 

a subset of strains in both species (Suppl. Fig. 3). Interestingly, wing size is generally smaller 

in D. mauritiana strains, and we found strain-specific positive, negative or no correlation with 

eye size (Suppl. Fig. 4). 

While some D. simulans and D. mauritiana strains overlap in either ommatidia area or 

number, none of the strains overlapped in both parameters, leading to the clear separation of 

the species in eye composition (Fig. 1). Previously a large-effect quantitative trait locus has 

been identified that explains about 30% of the eye size difference between D. simulans and 

D. mauritiana (Arif et al., 2013; Torres-Oliva et al., 2021) due to differences in ommatidia area. 
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However, the functional consequences for vision in these flies remain unknown. To test this, 

we selected strains D. simulans M3 and D. mauritiana RED3 which have very similar 

ommatidia numbers but significantly different mean ommatidia (facet) areas (Fig. 1). We first 

performed detailed 2D and 3D morphological analysis of optical parameters of these focal 

strains to model their vision, and subsequently tested our predictions with behavioural 

experiments. 

 

Facet size and shape change in a dorsal to ventral-anterior gradient across species and 
sexes 
Drosophila compound eyes are 3D structures that are roughly shaped like a hemisphere. To 

analyse optical parameters across the entire eye, we used synchrotron radiation 

microtomography to collect high-resolution 3D image data of entire eyes and associated brain 

structures in D. simulans M3 and D. mauritiana RED3 (Fig. 2). Automated segmentation and 

measurement of individual facets for three individuals of each species and sex revealed a size 

gradient from smaller dorsal-posterior to larger anterior-ventral facets in both focal strains and 

both sexes (Fig. 2a). Facet size was overall smaller in D. simulans M3 and the size difference 

between females and males was more pronounced in D. simulans M3 compared to D. 

mauritiana RED3 (Fig. 2a). Analysis of ommatidia numbers and neuropil volumes indicates 

that lamina and medulla are proportionally scaled down with ommatidia number in males (Fig. 

2b-d). 

Additionally, we used geometric morphometric analysis of facet shapes to compare 

central ommatidia to frontal ommatidia in both sexes of D. simulans M3 and D. mauritiana 

RED3 (Fig. 2e and f): the six corners of each facet were landmarked and analysed via principal 

component and hierarchical clustering analysis. We recovered three cluster, which can be 

interpreted as three distinct facet shapes. Clusters 1 and 2 contained only frontal lenses, and 

cluster 3 contained only central lenses indicating that the position of the facet within the eye 

influences lens shape. Frontal lenses (clusters 1+2) were defined by longer dorsal and ventral 

edges (PC1 = 87.3% variation) than central lenses (cluster 3). Within the frontal lenses, PC2 

(4.5% variation) and PC9 (<1% variation) separated clusters 1 and 2, with cluster 1 being 

slightly elongated along the antero-posterior axis. There were no differences in sex (Chi 

sq=0.07, df=2, p=0.967) or strain (Chi sq=2.74, df=2, p=0.254) between clusters, implying that 

these factors do not influence facet shape.  
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Figure 2: 3D analysis of ommatidia size and shape in male and female D. simulans M3 and D. mauritiana 
RED3. a. synchrotron radiation microtomography analyses of males and females show a gradient from smaller 
to larger ommatidia from dorsal to anterior-ventral. D. simulans M3 females and especially males show an overall 
shift to smaller ommatidia compared to D. mauritiana RED3. b. Analysis of ommatidia numbers in three 
individuals per species and sex (including a.) show similar ommatidia numbers in females of both species and 
fewer ommatidia in males in line with overall smaller eye size. c. Segmentations of optic lobes (lamina, medulla, 
lobula and lobula plate) corresponding to male and female D. simulans and D. mauritiana in c. were used for 
volume analysis c. Optic lobes size scales with ommatidia number (b.): males of D. simulans M3 and D. 
mauritiana RED3 have generally smaller neuropils, most evident in lamina and medulla. e - f. Shape analysis of 
frontal and central ommatidia (as indicated) reveals separate clustering of frontal and central ommatidia for both 
species. 

 
D. mauritiana RED3 has greater optical sensitivity than D. simulans M3, especially in 
the frontal and ventral visual field 
To compare the optical capacity of both fly strains and their variation across the visual field, 

we implemented the open-source Python-based automated pipeline ODA (Currea et al., 2023) 

which estimates the location and approximate orientation of each lens with high resolution 
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across the eye. This generated eye maps of the volume (Suppl. Fig 5a), diameter (Suppl. Fig 

5b), cross-sectional area (Suppl. Fig 5c), and length (Suppl. Fig 6a) of the corneal lenses of 

the ommatidia and the mean IO angle of each lens with its nearest neighbours (Suppl. Fig 6b). 

Three male and three female eyes were scanned from both D. simulans M3 and D. mauritiana 

RED3. The coordinates were rotated manually to align the eye equators horizontally, visible 

as a horizontal band of smaller ommatidia in Figure 3 a (and Suppl. Fig. 6a, b, and c). 
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Figure 3: 3D analysis of optic parameters in D. simulans and D. mauritiana eyes. a–d. Eye maps of 
ommatidial lens volumes from the smallest and largest eye from each of the two species:  a male and female 
for each. Each dot of the scatterplot represents the location of an individual ommatidium in polar coordinates 
coloured by its 3D volume according to the colour scale indicated in the x- and y-axes of b and c. Line colours 
in b and c. and dot colours in d. indicate the fly’s rank in order of eye size per species, such that the darkest one 
is the largest eye of that species. The volume data is divided into 20 evenly spaced bins of elevation (b.) and 
azimuth (c.) with error bars indicating 3 times the standard error of the mean. d. Ordinary least squares were 
used to regress lens volume on azimuthal position to estimate and compare the azimuthal slope of lens volume 
between the two species. The resulting slope coefficients from those models are plotted. e–h. Eye maps of 
mean inter-ommatidial (IO) angle from the smallest and largest eye from each of the two species, plotted as in 
a-d. except for the elevation plot in f. The IO angle value used for each lens represents the average IO angle 
between that lens and all immediate neighbours. f. The same IO angle data from e. but sampling ommatidia 
from a narrow vertical band between 0±15° azimuth. Note that this is different from b., c., and g. because plotting 
the binned averages obfuscates the horizontal band of high acuity along the equator, likely due to the large 
range of IO angles along azimuth. h. Ordinary least squares was used to regress IO angle on azimuthal position 
as in d. All the eyes demonstrated negative azimuthal slopes, with no significant difference between species. i–
m. Scatterplots of total lens count (i.), mean lens diameter (j.), median IO angle (k.), median equatorial IO angle 
(l.), and IO angle interquartile range (m.) plotted along the y-axes and their allometric relationship to the surface 
area of their eye along the x-axis. Lines in the 2D scatterplots represent the predicted mean and the bands 
represent the 95% CI of the mean based on ordinary least squares regression of each y variable on surface 
area. Note that simple group differences based on ANOVA are indicated in the left margins with the following 
key: * = p<.05, ** = p<.01, and ***=p<.001. 

 

This area projects roughly onto the visual horizon during flight (Heisenberg and Wolf, 1988) 

and marks the region of the eye where rows of ommatidia initiated and grew during eye 

development, establishing a line of mirror symmetry about which rhabdomere arrangements 

flip vertically (Wolff and Ready, 1991). To compare the change in these parameters from the 

posterior to the anterior eye, we used ordinary least squares to fit an affine function of azimuth 

and compared the resulting slope parameters for each subject. 

Both D. simulans M3 and D. mauritiana RED3 eyes have the largest lenses in the 

frontal visual field just below the eye equator (Fig. 3a). For both species, lens volume 

increases with elevation, peaks just below the eye equator, and then decreases steadily (Fig. 

3b). In D. mauritiana RED3 this increase is more dramatically, starting at similar volumes at 

the dorsal and ventral extremes but increasing to larger maxima near the equator than D. 

simulans M3. Lens volume for both species decreases along elevation until a minimum around 

-45° and then increases, peaking at the anterior extreme (Fig. 3c). Moreover, in 5 of the 6 

size-ordered pairs, D. mauritiana RED3 have significantly greater lens volumes than D. 

simulans M3 for every azimuthal bin (Suppl. Fig 5a). All eyes have positive azimuthal slopes, 

but the slope for D. mauritiana RED3 was significantly greater than D. simulans M3 (p=.043). 

This is consistent with measurements of lens diameter (Suppl. Fig 5b), cross-sectional area 

(Suppl. Fig 5c), and length (Suppl. Fig 6a), except that the azimuthal slope was significant for 

lens diameter (p=.047) but neither cross-sectional area (p=.18) nor length (p=.08). Overall, 

this means that D. mauritiana RED3 have larger, broader, longer, and wider-spread 

ommatidial lenses than D. simulans M3, which could improve sensitivity in general, and 

especially in the frontal visual field below the eye equator. This increase in ventral optical 
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sensitivity is also more dramatic in D. mauritiana RED3 and is predicted to improve the 

detection of low-contrast objects below the visual horizon, such as rotting fruit or other 

oviposition sites. 

 

D. mauritiana RED3 and D. simulans M3 have higher spatial acuity along the eye 
equator 
Inter-ommatidial (IO) angles are largest at the posterior and peripheral extremes, reaching a 

minimum around 45° azimuth along the eye equator (Fig. 3e and f). For both species, IO angle 

stays relatively constant—remaining between 4° and 6° from about -45° to 45° elevation—

except for dramatic increases at the ventral and dorsal extremes and a region of smaller IO 

angles around the eye equator (Fig. 3f). D. mauritiana RED3 ranges less in IO angle than D. 

simulans M3, reaching smaller maxima in the top and bottom of the eye (≤15° versus ≤25°). 

For both species, IO angle decreases along azimuth from a maximum in the posterior extreme 

(≤15°) to a minimum around 45° azimuth (≥4°; Fig. 3g). We found no significant difference 

between species in the azimuthal profile or slope (Fig. 3g and h). Because spatial resolution 

is limited inversely by IO angle, maximum spatial resolution in both species is highest around 

45° azimuth and 0° elevation, along the eye equator. This increase in equatorial spatial 

resolution might be an adaptation to terrain statistics of different habitats (Hughes, 1977; 

Currea et al., 2022), and due to the horizontal band of smaller ommatidial diameters at the 

eye equator formed during eye development (Ready, Hanson and Benzer, 1976; Kumar, 

2012). Regardless, this would improve the resolution of small objects near visual horizon, a 

feature that would help in avoiding predators and locating oviposition sites. 

 

Eye allometry in D. mauritiana RED3 prioritizes contrast sensitivity more than D. 
simulans M3 
In holometabolous insects, body size and the size of organs derived from imaginal discs 

depend on, and are proportional to, environmental factors like temperature and food 

availability during larval development (Shingleton et al., 2007; Shingleton, Mirth and Bates, 

2008; Callier and Nijhout, 2013). In flies, larval feeding has been shown to affect eye size, 

ommatidia size, and ommatidia count (Currea, Smith and Theobald, 2018). As a result, 

variation in eye size and composition may reflect rearing differences. To address this, we 

modelled the scaling relationships between eye surface area and the following measurements: 

total lens count, mean lens diameter, median IO angle, median equatorial (elevation = 0±15°) 

IO angle, and IO angle interquartile range (Fig. 3i–m).  

Eye surface area (SA) is an ideal reference for allometric scaling because it is 

proportional to the rate of light absorption of the entire eye and is approximately the number 

of ommatidial lenses (N) times the mean ommatidial lens area (A), SA ≈ N × A. Because the 
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number of discernible brightness levels is proportional to lens area, SA is also proportional to 

the total number of images the eye can resolve, its spatial information capacity (Snyder, 1977). 

Using ordinary least squares, we regressed each measurement on the sum of eye area and 

a dummy-coded species variable (Suppl. Table 1). All models were a good fit, explaining a 

substantial proportion of the variance in SA plus the species variable (R2 = .65–.97, F = 8–

159, P ≤ .01).  

Lens count and size had significant positive slope coefficients, such that larger flies 

have more and larger ommatidia in both species. However, pairwise tests for the D. mauritiana 

RED3 - D. simulans M3 difference had significant but opposite signs, indicating that D. 

mauritiana RED3 eyes have fewer but larger lenses and therefore lower ommatidial density 

than D. simulans M3. Despite these clear allometric differences, D. simulans M3 flies in this 

sample had generally smaller eyes but higher ommatidial density, resulting in similar lens 

counts between the two species. Conversely, the interquartile range (IQR) of lens diameters 

has a significant negative slope and a significant positive D. mauritiana RED3 - D. simulans 

M3 difference, implying that D. mauritiana RED3 lens diameters are more variable than D. 

simulans M3 after accounting for eye size. This is consistent with the lens volume eye maps 

discussed above, which found a greater range of lens sizes in D. mauritiana RED3 than D. 

simulans M3 along elevation, generally larger ommatidia for every azimuthal bin, and a greater 

azimuthal slope. 

For both general and equatorial IO angles and comparison across both species, the 

slope coefficient was significant and negative, meaning that median angles scale inversely 

with eye size. However, the difference between species was only significant for median 

equatorial IO angles, such that D. mauritiana RED3 has significantly greater equatorial IO 

angles than D. simulans M3 after accounting for eye size. Because spatial resolution is 

inversely proportional to IO angle, D. simulans M3 has greater spatial resolution at the eye 

equator but similar resolution elsewhere. The IQR of IO angles had an insignificant slope 

coefficient and a significant but negative D. mauritiana RED3 - D. simulans M3 difference, 

meaning that D. simulans M3 have a greater range of IO angles. This is consistent with the IO 

angle eye maps above, which found a greater range in the elevation profiles of IO angle in D. 

simulans M3 (Fig. 3f). The increase in IO angles near the boundaries of the eye should 

effectively increase the FOV of the eye. Overall, these allometric relations suggest that D. 

mauritiana RED3 prioritize optical sensitivity more than D. simulans M3, which instead 

prioritize spatial resolution along the visual horizon and FOV at the peripheral extremes. 
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D. mauritiana RED3 and D. simulans M3 optomotor responses trade off contrast 
sensitivity and spatiotemporal resolution 
Our morphological analysis suggested that D. simulans M3 have higher spatial acuity due to 

smaller IO angles for equatorial ommatidia and D. mauritiana RED3 have higher optical 

sensitivity due to larger facet apertures, particularly in the central visual field just below the 

horizon. However, neural summation can recover sensitivity loss due to suboptimal optics by 

effectively sacrificing temporal or spatial resolution (Currea, Smith and Theobald, 2018). To 

measure the ethological implications of these optical differences, we used the flies’ optomotor 

response in a virtual reality flight simulator that allowed the presentation of different sinusoidal 

gratings moving to the left or right (Suppl. Fig. 7). Using a wingbeat analyser, we measured 

the flies’ steering effort in response to gratings of various contrasts, spatial frequencies, and 

temporal frequencies sorted randomly. Contrast sensitivity is defined as the reciprocal of the 

lowest contrast response, and both spatial and temporal acuity are defined by the maximum 

discernible frequency. Assuming that the interommatidial angle limits the maximal spatial 

sampling or resolution of the eye according to the Nyquist limit, such that the highest possible 

discernible frequency, fs, for a hexagonal lattice is given by the following equation: fs = 1/√3 * 

Δɸ-1. So, for every fs, there is a corresponding ideal IO angle, Δɸ = 1/√3 * fs -1. 

In the flight arena, D. simulans M3 and D. mauritiana RED3 traded off between higher 

contrast sensitivity and spatiotemporal tuning (Fig. 4). In accord with their larger ommatidia, 

D. mauritiana RED3 demonstrated higher contrast sensitivity (.14-1=7.4) than M3 (.27-1=3.7). 

Conversely, the spatial tuning curves demonstrate that D. simulans M3 has a higher spatial 

acuity (0.1 cpd) than D. mauritiana RED3 (0.08 cpd), implying smaller IO angles (~5.8° versus 

~7.2°) consistent with smaller measured IO angles in the eye equator of D. simulans M3. D. 

simulans M3 also responded with greater strength around 0.04 cpd, likely supported by their 

wider peripheral IO angles and greater IQR. Lastly, D. simulans M3 demonstrated higher 

temporal acuity, 50 Hz, than D. mauritiana RED3, 20 Hz. Overall, this demonstrates sharper 

(higher spatial acuity) and faster vision (higher temporal acuity) in D. simulans M3 but a greater 

ability to compare brightness values (higher contrast sensitivity) in D. mauritiana RED3. 
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Figure 4: Behavioural measurement of D. simulans and D. mauritiana contrast sensitivity, spatial resolution, and 
temporal resolution. Gratings of various contrasts (a-c), spatial frequencies (d-f), and temporal frequencies (g-
i) were presented to the flies in a rigid tether flight simulator equipped with a wingbeat analyzer. The gratings 
were filtered through a gaussian window and remained still for .2 s before moving to the left or right, indicated 
by the dotted line. For each subject, responses to leftward moving gratings were averaged with responses to 
the same grating moving rightward so that positive values represent mean steering in the direction of the grating 
(red or blue) and negative represents counter steering (gray). Mean normalized responses were baseline 
corrected, subtracting the mean response during the .1s before the onset of motion. Sample sizes are indicated 
in the bottom left corner of the colormaps. The images of gratings in the bottom of c., f., and i. are meant to give 
a sense of the change in the stimulus along the x-axis. Green arrows indicate the change in speed of the grating, 
ft/fs, which remains constant in the contrast experiment, decreases in the spatial frequency experiment, and 
increases in the temporal frequency one. a-c. As contrast increases, RED3 begins responding significantly at 
.14 (red arrow in c.) and M3 at .27 (blue arrow in c.). d-f. As spatial frequency increases and therefore rotational 
velocity decreases, mean responses decrease gradually until the Nyquist limit determined theoretically by the 
IO angle, reducing the contrast for higher frequencies as a result of aliasing. This limit differed between the two 
species, with RED3 responding significantly to spatial frequencies as high as .08 CPD (red arrow in f.) and M3 
as high as .1 CPD (blue arrow in f.). g-i. As temporal frequency and therefore rotational velocity increases, mean 
responses increase until they reach the Nyquist limit determined by the temporal resolution of the optomotor 
response, reducing the contrast for higher frequencies. M3 demonstrated higher temporal acuity, responding 
significantly to frequencies as high as 50 Hz (blue arrow) while RED3 stopped at 20 Hz (blue arrow). 

 

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 16, 2023. ; https://doi.org/10.1101/2023.07.16.549164doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.16.549164
http://creativecommons.org/licenses/by-nd/4.0/


Discussion: 

Variation in overall eye size, ommatidia number and facet area has been shown within and 

between Drosophila species by several research groups and differences in vision have been 

proposed based on these optical parameters (Posnien et al., 2012; Arif et al., 2013; Hilbrant 

et al., 2014; Keesey et al., 2019; Ramaekers et al., 2019; Gaspar et al., 2020). In this study 

the demonstrated allometries and regional specializations of D. mauritiana and D. simulans 

were found to differ in quantity but not quality: 1) maximum sensitivity in the central visual field 

below the horizon, with very similar elevation and azimuthal profiles; 2) maximum acuity along 

the visual horizon of the eye; and 3) improvements in optical sensitivity and spatial resolution 

for larger conspecifics. Future investigations of the developmental origins of these gradients 

and regional specializations in spatial resolution and optical sensitivity and how they may differ 

between flies will aid our understanding of how the astonishing diversity in insect eyes has 

evolved.  

So far, our knowledge of how insects developmentally and evolutionarily balance the 

trade-off between ommatidia number (resolution) and ommatidia size (sensitivity) is very 

limited. The genetic basis of evolutionary differences in eye size has been difficult to 

determine, partly because ommatidia size and number seem to be genetically uncoupled and 

differences in these features polygenic. While differences in ommatidia size between D. 

mauritiana and D. simulans have been mapped to orthodenticle (Arif et al., 2013; Torres-Oliva 

et al., 2021), and a cis-regulatory region of eyeless has been shown to contribute to 

differences in eye size within D. melanogaster and between this species and D. 

pseudoobscura (Ramaekers et al., 2019), these changes do not explain the full extent of 

variation. Other genes involved in the regulation of cell proliferation and differentiation in 

developing eye imaginal discs are the most likely candidates to contribute to the diversification 

of eye size. For example, phosphoinositides including the Drosophila class I(A) PI 3-kinase 

Dp110 and its adaptor p60, the gap-junction protein inx2 and the 40s ribosomal protein S6 

kinases, have all been shown to alter ommatidia number and/or size (Montagne et al., 1999; 

Weinkove et al., 1999; Richard and Hoch, 2015; Janardan et al., 2020).  

Very little comparative functional data is available to truly understand the impact of 

natural variation in eye structure on vision. Here we modelled and tested optical capacity in 

two Drosophila species – D. mauritiana and D. simulans – between two strains that had similar 

ommatidia number but significantly different ommatidia facet sizes, to assess whether 

predicted differences in contrast sensitivity, spatial resolution, and temporal resolution could 

be observed in behavioural experiments. In principle, larger facets could evolve to provide 

either better sensitivity (collecting more light in a similar amount of time) or better temporal 

resolution (collecting similar amounts of light over shorter times), or some combination. 
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Indeed, we confirmed higher spatial and temporal acuity in D. simulans with smaller 

ommatidia, and improved contrast sensitivity in M3, with larger ommatidia. Whether and how 

these differences reflect meaningful adaptations to ecological differences remains to be 

explored, but the recapitulation of morphological divergence through behavioural paradigms 

is compelling. 

We also identified substantial intraocular variation in lens volume, interommatidial 

spherical angles, facet shape, and lens diameter, as has been reported in other dipterans. 

While the optomotor experiments reported here tested global responses, future behavioural 

experiments might target different parts of the visual field to see whether this regional variation 

has a functional significance. Potentially increased spatial resolution at the equator of the eye, 

and in the anterior-ventral FOV, was predicted from our morphological data.  Increased acuity 

at the horizon, combined with horizontally narrower facets at the centre of the eye, for example 

might enhance the detection of lateral optic flow. Likewise, the stronger anterior-frontal 

gradient in predicted resolution for females could have implications for the detection of 

oviposition sites. 

While our analysis supports the use of 3D morphological data to predict optical 

capacity, many other factors are involved in information acquisition and processing in the 

insect eye that are not as easily accessible. Recent discovery of smooth and saccadic retinal 

muscle movement to improve perception of moving and stationary objects respectively 

(Hengstenberg, 1972; Fenk et al., 2022) as well as hyperacute vision via photomechanical 

photoreceptor contractions (microsaccades) (Hardie and Franze, 2012; Juusola et al., 2017; 

Kemppainen, Mansour, et al., 2022; Kemppainen, Scales, et al., 2022) have revealed much 

more sophisticated mechanisms are employed in Drosophila eyes to sample visual 

information. In particular, the spatial resolution of compound eyes can exceed the spatial 

Nyquist limit set by the IO angle due to brief, stereotyped photomechanical contractions 

(microsaccades) that sharpen and shift rhabdomere receptive fields, affording so called 

hyperacuity (Juusola et al., 2017). These contractions are optimal for processing brief bursts 

of light followed by periods of darkness to better match the refractory phase of rhabdomere 

microvilli (Juusola et al., 2017) and generally match the optical flow of forward translation 

(Kemppainen, Scales, et al., 2022). As a result, these phases of improved acuity apply to 

specific combinations of motion direction, duration, speed, and visual field region. Moreover, 

the advantages and magnitude of the photomechanical rhabdomere contractions are limited 

by IO angle (Kemppainen, Mansour, et al., 2022), so that the difference in IO angles measured 

here still infer an important difference in visual capacity. 

The complexity of the visual system overall, incorporating mechanisms of neural 

summation and hyperacuity, further highlights the importance of using behavioural 

measurements of acuity and sensitivity and reinforces the conceptual distinction between 
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optical and contrast sensitivity. Neural summation could have reversed these differences as it 

did for D. mojavensis due to darkness adaptation (Currea et al., 2022) or facultatively within 

D. melanogaster individuals in response to forward optical flow (Theobald, 2017). An 

assessment of the optics alone would have ignored the difference in temporal acuity and 

overestimated the difference in contrast sensitivity between D. mauritiana and D. simulans 

based on differences in optical sensitivity. 

Aside from the functional aspect, the maintenance of eyes and the underlying complex 

neurocircuits are a metabolically expensive investment (Laughlin, De Ruyter Van Steveninck 

and Anderson, 1998). For example, comparison between photoreceptor information rates of 

larger and more active flies like the blowfly Calliphora with the smaller D. melanogaster 

showed a five times higher performance in Calliphora but at a ten times higher energetic cost 

(Niven, Anderson and Laughlin, 2007). The evolution of overall larger eyes with more and 

wider ommatidia and resulting increase in contrast sensitivity in D. mauritiana must therefore 

represent an economically viable investment aligned to their specific optical needs. The 

balance between sensory system requirements and energy efficiency has been observed in 

other fly species: The male housefly (Musca domestica) has a 60% higher bandwidth 

(measure of speed of response) in their contrast-coding R1-6 compared to females, allowing 

them to track these females in flight, whereas bandwidth decreases in male blowflies by 20% 

towards the back of the retina (Hornstein et al., 2000; Laughlin, 2001). It is therefore 

conceivable that absolute eye size is under stronger selection than ommatidia number or 

ommatidia size on their own, and at least to some extent independent of body size and other 

functional traits (Shearn and Garen, 1974; Bryant and Levinson, 1985; Cowley and Atchley, 

1990). Evidence from Drosophila wings suggests that compensatory mechanisms guarantee 

a certain wing size if overall size deviates too much (McCabe, French and Partridge, 1997; 

Calboli, Gilchrist and Partridge, 2003). A similar mechanism could be at play in D. simulans 

where ommatidia number and size to be coordinated to maintain similar eye size across 

strains. 

Insects play vital roles in various ecosystems, including pollination and decomposition. 

Climate change and the disappearance of ecological niches around the world highlights the 

need understand how they perceive and interact with their environment and vision is a primary 

sensory modality for many insects, shaping their behaviour, foraging strategies, and 

reproductive patterns. Our study demonstrates that even subtle differences in ommatidia size 

between closely related species can have a measurable effect on their vision. Therefore, 

comparative studies of natural variation in eye morphology and the consequences for vision 

across dipterans and beyond are needed to fully understand how the diversification of eye 

size, shape and function allowed insects to adapt to the vast range of ecological niches around 

the world. 
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Methods: 

Fly strains and husbandry 
Multiple strains of D. simulans and D. mauritiana were used in this study (Gaspar et al., 2020; 

Suppl. Table 2). All stocks used were kept on standard yeast extract-sucrose medium at 25°C 

under a 12:12 hr dark/light cycle. For experiments, flies were reared at controlled, low density, 

achieved by transferring set numbers of males and females (typically between 10-20 of each 

sex) into fresh food containers to lay offspring. Adult offspring were removed soon after 

eclosion for experiments.  

 
Scanning Electron Microscopy  
Fly heads were prepared and imaged as previously described (Gaspar et al., 2020). Briefly, 

heads were fixed in Bouin’s solution (Sigma-Aldrich) and dehydrated to 100% ethanol. For 

SEM imaging heads were critical point dried in a Tousimis 931.GL Critical Point Dryer and 

mounted onto sticky carbon tabs on SEM stubs, gold coated (10 nm) and imaged in 

a Hitachi S-3400N SEM with secondary electrons at 5kV.  

 

Morphological measurements 
SEM images of eyes were analysed using FIJI/ImageJ (Schindelin et al., 2012). For each 

strain, 15 males and 15 females were measured. Ommatidia number was counted manually 

by using multi-point tool for one compound eye per individual (from side views of compound 

eyes). Ommatidia size and overall eye area were measured manually with the polygon 

selection tool. Frontal and central ommatidia area were measured for each eye with the 

polygon selection tool. The area of six central ommatidia was average to determine mean 

ommatidia (facet) size. Wing and tibia of the second leg of each fly were dissected in 70% 

ethanol and mounted in Hoyer’s solution, and cured overnight at 60°C. Wings and tibia were 

imaged at 5x (1.25x) magnification using Zeiss Axioplan microscope equipped with ProgRes 

MF cool camera (Jenaoptik). Wings and tibias size were measured using the line tool in 

Fiji/ImageJ.  
 
Synchrotron Radiation Tomography 
Fly heads were prepared as described for SEM to 100% ethanol, then stained with 1% iodine 

and washed in ethanol. Fly heads were mounted in 20 µl pipette tips filled with 100% ethanol 

for synchrotron radiation X-ray tomography and scanned at the TOMCAT beamline of the 

Swiss Light Source (Paul Scherrer Institute, Switzerland (Stampanoni et al., 2006) and 

Diamond-Manchester Imaging Branchline I13-2 (Diamond Light Source, UK) (Rau et al., 2011; 

Peić et al., 2013) as previously described (Gaspar et al., 2020; Torres-Oliva et al., 2021). 
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3D Segmentation  
The IMOD Software package (Kremer, Mastronarde and McIntosh, 1996) was used to 

generate cropped mrc stacks for 3D segmentation and analysis of the head tissue, lenses and 

optic lobes in Amira v.2019.2 (Thermo Fisher Scientific). Ommatidial lenses were segmented 

through threshold and separate objects tools. Lens sizes were analysed and colour-coded 

depending on size with the label analysis and sieve module. 

 

Morphometric analysis 
Heads were tilted in the SEM to obtain flat images of frontal and central ommatidia for 

geometric morphometric analysis. The six corners of each facet were landmarked using the 

digitize2D function in the R package Geomorph (v.4.0.4) (Baken et al., 2021; Adams et al., 

2023). Data were registered and Procrustes transformed using procSym function in the 

package Morpho (v.2.10) (Schlager, 2017), to account for reflection, before principal 

component analysis using the Geomorph package. Hierarchical clustering was performed and 

visualised using the factomineR (v.2.6) and factoextra (v.1.0.7) (Lê, Josse and Husson, 2008; 

Kassambara and Mundt, 2020) packages, using the option nb.clusters = -1 to select the 

optimal number of clusters. The strain, sex, and positional identities of the resulting clusters 

were analysed by Chi squared in base R, and the contribution of the principal components to 

clustering was extracted from desc.var generated by the HCPC function for clustering. Plots 

were generated using ggplot2 (v.3.4.2) (Wickham, 2017).  

 
Statistical analysis 
Plots and statistical analysis were carried out in RStudio Version 2023.03.0+386 using the 

Tidyverse suite of packages (Wickham et al., 2019). Where analysis required comparison 

between a length and an area, the length measurement was squared. Linear lines of fit were 

added to plots using geom_line(stat="smooth", method=lm). Correlation statistics were 

calculated using Pearsons correlation coefficient using stat_cor(method = "pearson"). 

 

ODA and Allometry 
To approximate the optical performance of the two species, we processed CT stacks of six 

flies (three male and three female) from the RED3 strain of D. mauritiana and the M3 strain of 

D. simulans. This allowed us to apply the 3D ommatidia detecting algorithm (ODA-3D; Figure 

Suppl. Fig. 7a), a pipeline for automatically measuring a number of visual parameters for 

compound eyes (Currea et al., 2023). Each dataset was manually cleaned to generate binary 

images of only the corneal lenses. Then, the program fitted a cross-sectional surface through 

the coordinates of the lens cluster and projected these coordinates onto the cross-section, 
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allowing a custom clustering algorithm to find ommatidia-like objects in the 2D projected 

images. Finally, the volume, diameter, cross-sectional area, length, and average IO angle of 

each lens was measured. Eye surface area was estimated as the sum of the lens areas based 

on the ODA-derived lens diameters. Allometric scaling relations were derived by regressing 

each of the measured visual parameters on eye surface area plus a constant. The resultant 

parameters of these models are found in Supplementary Table 1. 

 

Flight Arena 
To measure the optomotor performance of D. mauritiana RED3 and D. simulans M3, we 

performed psychophysics in a rigid tether flight simulator equipped with a wingbeat analyzer 

(technical information can be found in (Currea, Smith and Theobald, 2018; Currea et al., 2022) 

and Suppl. Fig. 7b. Flies were glued to a thin tungsten rod and centred within an acrylic cube 

lined with rear-projection material (with 1/6 of the panels left open), immersing them in the 

projection surrounding 5/6 of their FOV (Suppl. Fig. 7c). An IR light casted the shadow of each 

wing onto photodiodes below the fly designed to output the amplitude of each wingbeat 

shadow as a 1000 Hz voltage signal. The difference between the left and right wingbeat 

amplitudes (ΔWBA) is proportional to yaw torque and indicates the fly’s steering effort. For 

instance, in Suppl. Figure 7d we plot the ΔWBA time series for an exemplary fly in response 

to 9 gratings of different contrast (corresponding to the line’s saturation) moving to the left or 

right (warm vs. cool hue). Note that the strength of the response is affected by contrast while 

the direction corresponds generally to the direction of motion. These responses were taken 

from (Currea et al., 2022), which used the same methods. 

 

Psychophysics 
In the flight arena, flies viewed gratings of various contrasts (Fig. 4a-c, with examples at the 

bottom of c.), spatial frequencies (Fig. 4d-f), and temporal frequencies (Fig. 4g-i) to measure 

the functional consequences of their optical differences. The gratings were filtered through a 

gaussian window and remained still for .2 s before moving to the left or right, indicated by the 

dotted lines in Fig. 4. For each subject, responses to leftward moving gratings were 1) 

averaged with responses to the same grating moving rightward, 2) baseline corrected, 

subtracting the mean response during the .1 s before the onset of motion, and 3) normalized 

to the maximum mean response per fly so that positive values represent mean steering in the 

direction of the grating, with a maximum of 1 (fully saturated red or blue) and negative 

represents countersteering (gray). These baseline-corrected normalized responses were 

averaged across each group to make the colormaps in Figure 4. For each fly, an average of 

these normalized responses was taken from 0.5–1.25 s and used for plotting and comparing 

means in the bottom row of subplots in Figure 4.  
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Bootstrapping was used to test for a grating’s discernibility by estimating the standard 

error of the mean and 90% C.I.s for the mean response. We bootstrapped the means taken 

between .5 and 1.25 s 10,000 times at the subject level to generate empirical sampling 

distributions of the mean for each parameter value accounting for repeated measures. The 

68% C.I. of each distribution was used as an approximation of the standard error (error bars 

in the bottom row of Figure 4) and the lower bound of the 90% C.I. was used to test for positive 

significance with a two-tailed alpha of .1 or one-tailed alpha of .05. Contrast sensitivity was 

defined as the reciprocal of the lowest discernible contrast and spatial and temporal acuity 

were defined by the highest discernible frequency. 
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Supplement 
 

 
Supplementary Figure 1: Correlation analysis for ommatidia number and ommatidia size D. simulans 
and D. mauritiana strains. Male and female D. simulans (blue) show a significant, negative correlation between 
ommatidia size and ommatidia number such that individuals with larger ommatidia tend to have less ommatidia 
overall. In D. mauritiana (red), males exhibit a significant positive correlation between ommatidia size and 
number, where the individuals with larger ommatidia also have a larger number of ommatidia. 

 
 

 

Supplementary Figure 2: Variation in wing and tibia size across D. mauritiana (red) and D. simulans (blue) 
strains. Average eye size (circle area) of D. simulans (blue) and D. mauritiana (red) strains (circle labels) is 
plotted against wing vein and tibia lengths. D. simulans strains (blue) generally have larger wings but show some 
variation in tibia size whereas D. mauritiana strains generally have smaller wings and greater variation in tibia 
length. 
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Supplementary Figure 3: Correlation of 2nd leg tibia size with eye size in D. mauritiana (red) and D. 
simulans (blue) strains. In males and females of both species only a subset of strains shows a significant 
positive correlation between tibia length and eye size. 
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Supplementary Figure 4: Correlation of wing size with eye size in D. mauritiana (red) and D. simulans 
(blue) strains. In males and females of both species only a subset of strains shows a significant positive 
correlation between wing vein length (a proxy for wing size) and eye size. 
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Supplementary Figure 5: Eye maps of ommatidia measurements across eyes of D. simulans and D. 
mauritiana. a–c. Eye maps of ommatidial lens volumes (a.), lens diameters (b.), and cross-sectional areas 
(c.), with their elevation (right column of each panel) and azimuthal (bottom row of each) profiles, and their 
azimuthal slope (bottom right inset of each) from 6 flies from each of the two species, D. mauritiana (RED 3) 
and D. simulans (M3), 3 males and females for each. The eyes are sorted in order from smallest to largest 
eye surface area, which also resulted in ordering by sex because males are generally smaller. Each dot of 
the scatterplot represents the location of an individual ommatidium in polar coordinates coloured by its 3D 
volume according to the colour bars. Line colours in the azimuthal and elevation profiles and dot colours in 
the azimuthal slope plots indicate the fly’s rank in order of eye size per species, such that the darkest one is 
the largest eye of that species. Each outcome is divided into 20 evenly spaced bins of elevation (line plots to 
the right) and azimuth (line plots below) with error bars indicating 3 times the standard error of the mean of 
each bin. Ordinary least squares was used to regress each outcome on azimuthal position to estimate and 
compare the azimuthal slope between the two species. Scatterplots in the bottom right show the resulting 
slope coefficients from those models. Note that azimuth here is in radians but was converted to degrees for 
the plots Figure 3 and the calculation of the slope. a. Note that this presents the full dataset used in the 
elevation profiles of Figure 3b and the azimuthal slopes in Figure 3d. 
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Supplementary Figure 6: Eye maps of ommatidia lens length and IO across eyes of D. simulans and D. 
mauritiana.  a–b. Eye maps of ommatidial lens length (a.) and IO angle (b.) as in Suppl. Figure 5, with their 
elevation (right column of each panel) and azimuthal (bottom row of each) profiles, and their azimuthal slope 
(bottom right inset of each) from 6 flies from each of the two species, D. mauritiana (RED 3) and D. simulans 
(M3), 3 males and females for each. The eyes are sorted in order from smallest to largest eye surface area, 
which also resulted in ordering by sex because males are generally smaller. Each dot of the scatterplot 
represents the location of an individual ommatidium in polar coordinates coloured by its 3D volume according 
to the colour bars. Line colours in the azimuthal and elevation profiles and dot colours in the azimuthal slope 
plots indicate the fly’s rank in order of eye size per species, such that the darkest one is the largest eye of that 
species. Each outcome is divided into 20 evenly spaced bins of elevation (line plots to the right) and azimuth 
(line plots below) with error bars indicating 3 times the standard error of the mean of each bin. Ordinary least 
squares was used to regress each outcome on azimuthal position to estimate and compare the azimuthal slope 
between the two species. Scatterplots in the bottom right show the resulting slope coefficients from those 
models. Note that azimuth here is in radians but was converted to degrees for the plots Figure 3 and the 
calculation of the slope. b. Note that, as in Figure 3, the elevation profile for IO angle was plotted differently 
because plotting the binned averages obfuscates the horizontal band of high acuity along the equator, likely due 
to the large range of IO angles along azimuth. This also presents the full dataset used in Figure 3f and the 
azimuthal slopes in Figure 3h. 
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Supplementary Figure 7: Workflow for modelling and testing vision in Drosophila. a. Optical performance 
was evaluated across the visual field of each eye by applying the ODA-3D, which requires first prefiltering the 
stack to just its corneal lenses to fit a cross-sectional surface, apply a clustering algorithm, and finally take 
optically relevant measurements for each lens. b. Optomotor performance was evaluated by a virtual reality 
flight simulator using an open-source computer graphics library, highspeed projector, and precisely positioned 
first-surface mirrors to project high resolution and contrast stimuli surrounding 5/6 of the flies’ FOV. c. Flies were 
glued to a thin tungsten rod and centred within an acrylic cube lined with rear-projection material immersing 
them in the projection as in b. An IR light casted the shadow of each wing onto photodiodes below the fly 
designed to output the amplitude of each wingbeat shadow as a 1000 Hz voltage signal. The difference between 
the left and right wingbeat amplitudes (ΔWBA) is proportional to yaw torque and indicates the fly’s steering effort. 
d. For instance, we plotted the ΔWBA time series for an exemplary fly in response to 9 gratings of different 
contrast (corresponding to the line’s saturation) moving to the left or right (warm vs. cool hue), drawn from 
(Currea et al., 2022). Notice that the strength of the response is partially dependent on contrast while the 
direction corresponds generally to the direction of motion. Leftward motion ΔWBA responses were averaged 
with the inverse of rightward motion ΔWBA responses to account for directional biases in our measurement. 
These averages were then normalized to the maximum mean response per fly and averaged across each group 
to make the colormaps in Figure 4. For each fly, an average of these normalized responses was taken from 0.5–
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Supplementary Table 1: Parameters of the linear regression models of the allometries of optical 
parameters with respect to eye surface area. Each outcome was modelled as a linear combination of eye 

area and species (dummy-coded) with a constant intercept using ordinary least squares regression. The 

coefficient of determination (R2) and F-statistic are provided as measurements of goodness-of-fit with asterisks 

indicating the significance according to the key at the bottom of the table. The intercept and slope are the 

resulting coefficients of the regression model. D. mauritiana RED3 – D. simulans M3 is the pairwise difference 

of means after accounting for differences in eye size, such that values < 0 imply that D. simulans M3 values 

were greater than D. mauritiana RED3 relative to eye size. The significance of these statistics (F, intercept, 

slope, and D. mauritiana RED3 – D. simulans M3) is signified by the number of asterisks next to these values 

according to the key at the bottom of the table. 

 

outcome R2 F intercept slope RED3 – M3 

lens count 0.96 110*** 976***  2.4 x 10-3*** -58*** 

lens diameters (µm) 0.97 159*** 16***  2.1 x 10-5*** 0.54*** 

lens diameter IQR (µm) 0.73 12** 1.1*** -3.4 x 10-6* 0.33** 

median IO angle (°) 0.78 16** 4.9*** -7.1 x 10-6*** -0.009 

median equatorial IO angle (°) 0.92 53*** 4.4*** -7.3 x 10-6*** 0.22*** 

IO angle IQR (°) 0.65 8** 3.1*** -2.2 x 10-6 -0.51** 

key:      

*: p ≤ .05, **: p ≤ .01, ***: p ≤ .001      

 

 

 
Supplementary Table 2 - Drosophila strains used in this eye size survey. 

Line Species Collection 
place 

Collector/ 
Provider Lab 

Collection 
date 

Reference  

M3 D. simulans  Antananarivo, 
Madagascar 

B. Ballard/ 
Christian 
Schlötterer 

1998 Palmieri et al. 2014 MolEc 
Res 

DAV23  D. simulans  Davis, 
California, USA 

Michael Turelli 2009   

M252 D. simulans  Antananarivo, 
Madagascar 

B. Ballard/ 
Christian 
Schlötterer 

1998 Palmieri et al. 2014 MolEc 
Res 

HIN10 D. simulans  Entawville, 
South Carolina, 
USA 

Paul Schmidt/ 
Christian 
Schlötterer 

2008   

Kib11 D. simulans  Kibale, Uganda Marianne Imhof/ 
Christian 
Schlötterer 

2001 Nolte and Schlotterer 
Genetics 2008, Hilbrant et al. 
2014 BMC Evol. Biol. 

1.25 s and used for plotting and comparing means in the bottom subplots (Figure 4 c, f, and i). These. e. 
Sinusoidal moving gratings were used because they are independently defined by a single orientation (leftward 
or rightward, for example), spatial frequency (x-axis), contrast (y-axis), and temporal frequency (the frequency 
of brightness change per pixel). 
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MAV2 D. 
mauritiana 

Mareaux 
Vacoas, 
Mauritius 

D. Nunes/ 
Christian 
Schlötterer 

2009   

RED3 D. 
mauritiana 

Reduit, Mauritius M. Ramos/ 
Christian 
Schlötterer 

2006   

MS17 D. 
mauritiana 

Seizieme Mille, 
Mauritius 

Kyoto DGGR, 
stock number E-
18912 

1987 Nolte V. et al. 2013 Genome 
Res. 

TAM16 D. 
mauritiana 

Tamarin, 
Mauritius 

Christian 
Schlötterer/ 
Christian 
Schlötterer 

2007 Nolte V. et al. 2013 Genome 
Res. 
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