55 research outputs found

    Large enhancement of deuteron polarization with frequency modulated microwaves

    Get PDF
    We report a large enhancement of 1.7 in deuteron polarization up to values of 0.6 due to frequency modulation of the polarizing microwaves in a two liters polarized target using the method of dynamic nuclear polarization. This target was used during a deep inelastic polarized muon-deuteron scattering experiment at CERN. Measurements of the electron paramagnetic resonance absorption spectra show that frequency modulation gives rise to additional microwave absorption in the spectral wings. Although these results are not understood theoretically, they may provide a useful testing ground for the deeper understanding of dynamic nuclear polarization.Comment: 10 pages, including the figures coming in uuencoded compressed tar files in poltar.uu, which also brings cernart.sty and crna12.sty files neede

    Volume I. Introduction to DUNE

    Get PDF
    The preponderance of matter over antimatter in the early universe, the dynamics of the supernovae that produced the heavy elements necessary for life, and whether protons eventually decay—these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our universe, its current state, and its eventual fate. The Deep Underground Neutrino Experiment (DUNE) is an international world-class experiment dedicated to addressing these questions as it searches for leptonic charge-parity symmetry violation, stands ready to capture supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector technical design report (TDR) describes the DUNE physics program and the technical designs of the single- and dual-phase DUNE liquid argon TPC far detector modules. This TDR is intended to justify the technical choices for the far detector that flow down from the high-level physics goals through requirements at all levels of the Project. Volume I contains an executive summary that introduces the DUNE science program, the far detector and the strategy for its modular designs, and the organization and management of the Project. The remainder of Volume I provides more detail on the science program that drives the choice of detector technologies and on the technologies themselves. It also introduces the designs for the DUNE near detector and the DUNE computing model, for which DUNE is planning design reports. Volume II of this TDR describes DUNE\u27s physics program in detail. Volume III describes the technical coordination required for the far detector design, construction, installation, and integration, and its organizational structure. Volume IV describes the single-phase far detector technology. A planned Volume V will describe the dual-phase technology

    Deep Underground Neutrino Experiment (DUNE), far detector technical design report, volume III: DUNE far detector technical coordination

    Get PDF
    The preponderance of matter over antimatter in the early universe, the dynamics of the supernovae that produced the heavy elements necessary for life, and whether protons eventually decay—these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our universe, its current state, and its eventual fate. The Deep Underground Neutrino Experiment (DUNE) is an international world-class experiment dedicated to addressing these questions as it searches for leptonic charge-parity symmetry violation, stands ready to capture supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector technical design report (TDR) describes the DUNE physics program and the technical designs of the single- and dual-phase DUNE liquid argon TPC far detector modules. Volume III of this TDR describes how the activities required to design, construct, fabricate, install, and commission the DUNE far detector modules are organized and managed. This volume details the organizational structures that will carry out and/or oversee the planned far detector activities safely, successfully, on time, and on budget. It presents overviews of the facilities, supporting infrastructure, and detectors for context, and it outlines the project-related functions and methodologies used by the DUNE technical coordination organization, focusing on the areas of integration engineering, technical reviews, quality assurance and control, and safety oversight. Because of its more advanced stage of development, functional examples presented in this volume focus primarily on the single-phase (SP) detector module

    Highly-parallelized simulation of a pixelated LArTPC on a GPU

    Get PDF
    The rapid development of general-purpose computing on graphics processing units (GPGPU) is allowing the implementation of highly-parallelized Monte Carlo simulation chains for particle physics experiments. This technique is particularly suitable for the simulation of a pixelated charge readout for time projection chambers, given the large number of channels that this technology employs. Here we present the first implementation of a full microphysical simulator of a liquid argon time projection chamber (LArTPC) equipped with light readout and pixelated charge readout, developed for the DUNE Near Detector. The software is implemented with an end-to-end set of GPU-optimized algorithms. The algorithms have been written in Python and translated into CUDA kernels using Numba, a just-in-time compiler for a subset of Python and NumPy instructions. The GPU implementation achieves a speed up of four orders of magnitude compared with the equivalent CPU version. The simulation of the current induced on 10^3 pixels takes around 1 ms on the GPU, compared with approximately 10 s on the CPU. The results of the simulation are compared against data from a pixel-readout LArTPC prototype

    Phenotypes and endotypes of rhinitis and their impact on management: A PRACTALL report

    No full text
    Rhinitis is an umbrella term that encompasses many different subtypes, several of which still elude complete characterization. The concept of phenotyping, being the definition of disease subtypes on the basis of clinical presentation, has been well established in the last decade. Classification of rhinitis entities on the basis of phenotypes has facilitated their characterization and has helped practicing clinicians to efficiently approach rhinitis patients. Recently, the concept of endotypes, that is, the definition of disease subtypes on the basis of underlying pathophysiology, has emerged. Phenotypes/endotypes are dynamic, overlapping, and may evolve into one another, thus rendering clear-cut definitions difficult. Nevertheless, a phenotype-/endotype-based classification approach could lead toward the application of stratified and personalized medicine in the rhinitis field. In this PRACTALL document, rhinitis phenotypes and endotypes are described, and rhinitis diagnosis and management approaches focusing on those phenotypes/endotypes are presented and discussed. We emphasize the concept of control-based management, which transcends all rhinitis subtypes. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd

    Chromosome-12 Mapping of Late-Onset Alzheimer Disease among Caribbean Hispanics

    Get PDF
    Linkage to chromosome 12p for familial Alzheimer disease (AD) has been inconsistent. Using 35 markers near the centromere of chromosome 12, we investigated 79 Caribbean Hispanic families with AD. Two-point linkage analysis using affected sib pairs yielded LOD scores of 3.15 at D12S1623 and 1.43 at D12S1042. The LOD score at D12S1623 decreased to 1.62 in families with late-onset (age >65 years) AD (LOAD), but the LOD score at D12S1042 was unchanged. Among families negative for the apolipoprotein E (APOE-ε4) allele, the LOD score for D12S1623 was lower (1.01), whereas that for D12S1042 increased to 1.73. Among families positive for the APOE-ε4 allele, none of the LOD scores reached 1. Multipoint affected-relative-pair analysis showed peaks at D12S1623 (nonparametric linkage [NPL] score 1.52; P=.028) and near D12S1042, at D12S1057 (NPL score 1.57; P=.027). NPL scores for both D12S1623 and D12S1057 increased in families affected with LOAD, but, in APOE-ε4–negative families, only scores for the region flanking D12S1623 remained elevated (NPL score 1.74; P=.013). This study of Caribbean Hispanics with familial AD extends and provides modest evidence of linkage to loci on chromosome 12p. Linkage varied by age at onset of AD and by the presence or absence of the APOE-ε4 allele
    corecore