81 research outputs found

    Tissue Barriers to Arbovirus Infection in Mosquitoes

    Get PDF
    Citation: Franz, A. W. E., Kantor, A. M., Passarelli, A. L., & Clem, R. J. (2015). Tissue Barriers to Arbovirus Infection in Mosquitoes. Viruses-Basel, 7(7), 3741-3767. doi:10.3390/v7072795Arthropod-borne viruses (arboviruses) circulate in nature between arthropod vectors and vertebrate hosts. Arboviruses often cause devastating diseases in vertebrate hosts, but they typically do not cause significant pathology in their arthropod vectors. Following oral acquisition of a viremic bloodmeal from a vertebrate host, the arbovirus disease cycle requires replication in the cellular environment of the arthropod vector. Once the vector has become systemically and persistently infected, the vector is able to transmit the virus to an uninfected vertebrate host. In order to systemically infect the vector, the virus must cope with innate immune responses and overcome several tissue barriers associated with the midgut and the salivary glands. In this review we describe, in detail, the typical arbovirus infection route in competent mosquito vectors. Based on what is known from the literature, we explain the nature of the tissue barriers that arboviruses are confronted with in a mosquito vector and how arboviruses might surmount these barriers. We also point out controversial findings to highlight particular areas that are not well understood and require further research efforts

    DNA-interacting characteristics of the archaeal rudiviral protein SIRV2_Gp1

    Get PDF
    This is the final version of the article. Available from the publisher via the DOI in this record.Whereas the infection cycles of many bacterial and eukaryotic viruses have been characterized in detail, those of archaeal viruses remain largely unexplored. Recently, studies on a few model archaeal viruses such as SIRV2 (Sulfolobus islandicus rod-shaped virus) have revealed an unusual lysis mechanism that involves the formation of pyramidal egress structures on the host cell surface. To expand understanding of the infection cycle of SIRV2, we aimed to functionally characterize gp1, which is a SIRV2 gene with unknown function. The SIRV2_Gp1 protein is highly expressed during early stages of infection and it is the only protein that is encoded twice on the viral genome. It harbours a helix-turn-helix motif and was therefore hypothesized to bind DNA. The DNA-binding behavior of SIRV2_Gp1 was characterized with electrophoretic mobility shift assays and atomic force microscopy. We provide evidence that the protein interacts with DNA and that it forms large aggregates, thereby causing extreme condensation of the DNA. Furthermore, the N-terminal domain of the protein mediates toxicity to the viral host Sulfolobus. Our findings may lead to biotechnological applications, such as the development of a toxic peptide for the containment of pathogenic bacteria, and add to our understanding of the Rudiviral infection cycle.This research was supported by the Geconcerteerde Onderzoeks Actie grant ‘Phage Biosystems’ from the KULeuven (http://www.kuleuven.be/onderzoek/kernprojecten/goa.htm). T.E.F.Q. was supported by a FWO Pegasus Marie-Curie fellowship and a Marie-Curie Intra-European Fellowship. The Belgian Federal Science Policy Office (Belspo) and the European Space Agency (ESA) PRODEX program supported the work of RGW. E.P. was supported by start-up funds provided by the Vrije Universiteit Brussel (VUB)

    Infection pattern and transmission potential of chikungunya virus in two New World laboratory-adapted Aedes aegypti strains

    Get PDF
    Citation: Dong, S. Z., Kantor, A. M., Lin, J. Y., Passarelli, A. L., Clem, R. J., & Franz, A. W. E. (2016). Infection pattern and transmission potential of chikungunya virus in two New World laboratory-adapted Aedes aegypti strains. Scientific Reports, 6, 13. doi:10.1038/srep24729Chikungunya virus (CHIKV) is an emerging mosquito-borne virus belonging to the Togaviridae, which is transmitted to humans by Aedes aegypti and Ae. albopictus. We describe the infection pattern of CHIKV in two New World Ae. aegypti strains, HWE and ORL. Both mosquito strains were susceptible to the virus but showed different infection patterns in midguts and salivary glands. Even though acquisition of a bloodmeal showed moderate levels of apoptosis in midgut tissue, there was no obvious additional CHIKV-induced apoptosis detectable during midgut infection. Analysis of expression of apoptosis-related genes suggested that CHIKV infection dampens rather than promotes apoptosis in the mosquito midgut. In both mosquito strains, the virus was present in saliva within two days post-oral infection. HWE and ORL mosquitoes exhibited no salivary gland infection barrier; however, only 60% (HWE) to 65% (ORL) of the females had released the virus in their saliva at one week post-oral acquisition, suggesting a salivary gland escape barrier. CHIKV induced an apoptotic response in salivary glands of HWE and ORL mosquitoes, demonstrating that the virus caused pathology in its natural vector

    Traumatismo de urgencia: resolución estética

    Get PDF
    Se presenta un caso clínico de un paciente masculino de 27 años, que consulta tras haber sufrido la avulsión de la pieza dentaria 2.1. Debido al tiempo transcurrido desde el accidente, el tratamiento de reimplantación no está indicado. Se decide realizar una ferulización provisoria con su pieza dentaria a fines estéticos y para mantenimiento del espacio mesio distal hasta la realización del tratamiento definitivo. Descripción del caso. En la anamnesis el paciente relata haber sufrido un accidente con la consiguiente pérdida de la pieza dentaria 2.1.Facultad de Odontologí

    Validation of the SCID-hu Thy/Liv mouse model with four classes of licensed antiretrovirals.

    Get PDF
    BackgroundThe SCID-hu Thy/Liv mouse model of HIV-1 infection is a useful platform for the preclinical evaluation of antiviral efficacy in vivo. We performed this study to validate the model with representatives of all four classes of licensed antiretrovirals.Methodology/principal findingsEndpoint analyses for quantification of Thy/Liv implant viral load included ELISA for cell-associated p24, branched DNA assay for HIV-1 RNA, and detection of infected thymocytes by intracellular staining for Gag-p24. Antiviral protection from HIV-1-mediated thymocyte depletion was assessed by multicolor flow cytometric analysis of thymocyte subpopulations based on surface expression of CD3, CD4, and CD8. These mice can be productively infected with molecular clones of HIV-1 (e.g., the X4 clone NL4-3) as well as with primary R5 and R5X4 isolates. To determine whether results in this model are concordant with those found in humans, we performed direct comparisons of two drugs in the same class, each of which has known potency and dosing levels in humans. Here we show that second-generation antiretrovirals were, as expected, more potent than their first-generation predecessors: emtricitabine was more potent than lamivudine, efavirenz was more potent than nevirapine, and atazanavir was more potent than indinavir. After interspecies pharmacodynamic scaling, the dose ranges found to inhibit viral replication in the SCID-hu Thy/Liv mouse were similar to those used in humans. Moreover, HIV-1 replication in these mice was genetically stable; treatment of the mice with lamivudine did not result in the M184V substitution in reverse transcriptase, and the multidrug-resistant NY index case HIV-1 retained its drug-resistance substitutions.ConclusionGiven the fidelity of such comparisons, we conclude that this highly reproducible mouse model is likely to predict clinical antiviral efficacy in humans

    Territory occupancy and breeding success of peregrine falcons Falco peregrinus at various stages of population recovery

    Get PDF
    Organochlorine pesticides disrupted reproduction and killed many raptorial birds, and contributed to population declines during the 1940s to 1970s. We sought to discern whether and to what extent territory occupancy and breeding success changed from the pesticide era to recent years in a resident population of Peregrine Falcons Falco peregrinus in southern Scotland using long-term (1964–2015) field data and multi-state, multi-season occupancy models. Peregrine territories that were occupied with successful reproduction in one year were much more likely to be occupied and experience reproductive success in the following year, compared with those that were unoccupied or occupied by unsuccessful breeders in the previous year. Probability of territory occupancy differed between territories in the eastern and western parts of the study area, and varied over time. The probability of occupancy of territories that were unoccupied and those that were occupied with successful reproduction during the previous breeding season generally increased over time, whereas the probability of occupancy of territories that were occupied after failed reproduction decreased. The probability of reproductive success (conditional on occupancy) in territories that were occupied during the previous breeding season increased over time. Specifically, for territories that had been successful in the previous year, the probability of occupancy as well as reproductive success increased steadily over time; these probabilities were substantially higher in recent years than earlier, when the population was still exposed to direct or residual effects of organochlorine pesticides. These results are consistent with the hypothesis that progressive reduction, followed by a complete ban, in the use of organochlorine pesticides improved reproductive success of Peregrines in southern Scotland. Differences in the temporal pattern of probability of reproductive success between south-eastern and south-western Scotland suggest that the effect of organochlorine pesticides on Peregrine reproductive success and/or the recovery from pesticide effects varied geographically and was possibly affected by other factors such as persecution

    Caspase Inhibitors of the P35 Family Are More Active When Purified from Yeast than Bacteria

    Get PDF
    Many insect viruses express caspase inhibitors of the P35 superfamily, which prevent defensive host apoptosis to enable viral propagation. The prototypical P35 family member, AcP35 from Autographa californica M nucleopolyhedrovirus, has been extensively studied. Bacterially purified AcP35 has been previously shown to inhibit caspases from insect, mammalian and nematode species. This inhibition occurs via a pseudosubstrate mechanism involving caspase-mediated cleavage of a “reactive site loop” within the P35 protein, which ultimately leaves cleaved P35 covalently bound to the caspase's active site. We observed that AcP35 purifed from Saccharomyces cerevisae inhibited caspase activity more efficiently than AcP35 purified from Escherichia coli. This differential potency was more dramatic for another P35 family member, MaviP35, which inhibited human caspase 3 almost 300-fold more potently when purified from yeast than bacteria. Biophysical assays revealed that MaviP35 proteins produced in bacteria and yeast had similar primary and secondary structures. However, bacterially produced MaviP35 possessed greater thermal stability and propensity to form higher order oligomers than its counterpart purified from yeast. Caspase 3 could process yeast-purified MaviP35, but failed to detectably cleave bacterially purified MaviP35. These data suggest that bacterially produced P35 proteins adopt subtly different conformations from their yeast-expressed counterparts, which hinder caspase access to the reactive site loop to reduce the potency of caspase inhibition, and promote aggregation. These data highlight the differential caspase inhibition by recombinant P35 proteins purified from different sources, and caution that analyses of bacterially produced P35 family members (and perhaps other types of proteins) may underestimate their activity

    Genomic characterization of the most barotolerant Listeria monocytogenes RO15 strain compared to reference strains used to evaluate food high pressure processing

    Get PDF
    BackgroundHigh pressure processing (HPP; i.e. 100-600MPa pressure depending on product) is a non-thermal preservation technique adopted by the food industry to decrease significantly foodborne pathogens, including Listeria monocytogenes, from food. However, susceptibility towards pressure differs among diverse strains of L. monocytogenes and it is unclear if this is due to their intrinsic characteristics related to genomic content. Here, we tested the barotolerance of 10 different L. monocytogenes strains, from food and food processing environments and widely used reference strains including clinical isolate, to pressure treatments with 400 and 600MPa. Genome sequencing and genome comparison of the tested L. monocytogenes strains were performed to investigate the relation between genomic profile and pressure tolerance.ResultsNone of the tested strains were tolerant to 600MPa. A reduction of more than 5 log(10) was observed for all strains after 1min 600MPa pressure treatment. L. monocytogenes strain RO15 showed no significant reduction in viable cell counts after 400MPa for 1min and was therefore defined as barotolerant. Genome analysis of so far unsequenced L. monocytogenes strain RO15, 2HF33, MB5, AB199, AB120, C7, and RO4 allowed us to compare the gene content of all strains tested. This revealed that the three most pressure tolerant strains had more than one CRISPR system with self-targeting spacers. Furthermore, several anti-CRISPR genes were detected in these strains. Pan-genome analysis showed that 10 prophage genes were significantly associated with the three most barotolerant strains.ConclusionsL. monocytogenes strain RO15 was the most pressure tolerant among the selected strains. Genome comparison suggests that there might be a relationship between prophages and pressure tolerance in L. monocytogenes.Peer reviewe

    Testing a global standard for quantifying species recovery and assessing conservation impact.

    Get PDF
    Recognizing the imperative to evaluate species recovery and conservation impact, in 2012 the International Union for Conservation of Nature (IUCN) called for development of a "Green List of Species" (now the IUCN Green Status of Species). A draft Green Status framework for assessing species' progress toward recovery, published in 2018, proposed 2 separate but interlinked components: a standardized method (i.e., measurement against benchmarks of species' viability, functionality, and preimpact distribution) to determine current species recovery status (herein species recovery score) and application of that method to estimate past and potential future impacts of conservation based on 4 metrics (conservation legacy, conservation dependence, conservation gain, and recovery potential). We tested the framework with 181 species representing diverse taxa, life histories, biomes, and IUCN Red List categories (extinction risk). Based on the observed distribution of species' recovery scores, we propose the following species recovery categories: fully recovered, slightly depleted, moderately depleted, largely depleted, critically depleted, extinct in the wild, and indeterminate. Fifty-nine percent of tested species were considered largely or critically depleted. Although there was a negative relationship between extinction risk and species recovery score, variation was considerable. Some species in lower risk categories were assessed as farther from recovery than those at higher risk. This emphasizes that species recovery is conceptually different from extinction risk and reinforces the utility of the IUCN Green Status of Species to more fully understand species conservation status. Although extinction risk did not predict conservation legacy, conservation dependence, or conservation gain, it was positively correlated with recovery potential. Only 1.7% of tested species were categorized as zero across all 4 of these conservation impact metrics, indicating that conservation has, or will, play a role in improving or maintaining species status for the vast majority of these species. Based on our results, we devised an updated assessment framework that introduces the option of using a dynamic baseline to assess future impacts of conservation over the short term to avoid misleading results which were generated in a small number of cases, and redefines short term as 10 years to better align with conservation planning. These changes are reflected in the IUCN Green Status of Species Standard

    Creep-sintering of Polycrystalline Ceramic Particulate Composites

    No full text
    The sintering of particulate composites consisting of a polycrystalline zinc oxide matrix with 10 vol % zirconia inclusions of two different sizes (3 and 14 μm) was investigated at a constant heating rate of 4 °C min−1 under an applied stress of ≈ 300 kPa. The presence of the inclusions produced a decrease in both the creep rate and the densification rate but the ratio of the densification to creep rate remained constant during the experiment. The ratio of the densification rate to creep rate for the composites was ≈ 1.5 times greater than that of the unreinforced matrix regardless of inclusion size. The creep viscosity of the composites was higher than that of the unreinforced matrix and increased slightly with decreasing inclusion size
    corecore