1,329 research outputs found

    Scalable and Tunable Carbide-Phosphide Composite Catalyst System for the Thermochemical Conversion of Biomass

    Get PDF
    © 2017 American Chemical Society. We have prepared composite materials of hexagonal nickel phosphide and molybdenum carbide (Mo2C) utilizing a simple and scalable two-stage synthesis method composed of carbothermic reduction followed by hydrothermal incubation. We observe the monophasic hexagonal phosphide Ni2P in the composite at low phosphide-to-carbide (P:C) ratios. Upon an increase in the proportion of P:C, the carbide surface becomes saturated, and we detect the emergence of a second hexagonal nickel phosphide phase (Ni5P4) upon annealing. We demonstrate that vapor-phase upgrading (VPU) of whole biomass via catalytic fast pyrolysis is achievable using the composite material as a catalyst, and we monitor the resulting product slates using pyrolysis-gas chromatography/mass spectrometry. Our analysis of the product vapors indicates that variation of the P:C molar ratio in the composite material affords product slates of varying complexity and composition, which is indicated by the number of products and their relative proportions in the product slate. Our results demonstrate that targeted vapor product composition can be obtained, which can potentially be utilized for tuning of the composition of the bio-oil downstream

    Electrocatalytic Activity and Stability Enhancement through Preferential Deposition of Phosphide on Carbide

    Get PDF
    © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim Phosphides and carbides are among the most promising families of materials based on earth-abundant elements for renewable energy conversion and storage technologies such as electrochemical water splitting, batteries, and capacitors. Nickel phosphide and molybdenum carbide in particular have been extensively investigated for electrochemical water splitting. However, a composite of the two compounds has not been explored. Here, we demonstrate preferential deposition of nickel phosphide on molybdenum carbide in the presence of carbon by using a hydrothermal synthesis method. We employ the hydrogen evolution reaction in acid and base to analyze the catalytic activity of phosphide-deposited carbide. The composite material also shows superior electrochemical stability in comparison to unsupported phosphide. We anticipate that the enhanced electrochemical activity and stability of carbide deposited with phosphide will stimulate investigations into the preparation of other carbide–phosphide composite materials

    The zygomatic implant perforated (ZIP) flap: a new technique for combined surgical reconstruction and rapid fixed dental rehabilitation following low-level maxillectomy.

    Get PDF
    Abstract This aim of this report is to describe the development and evolution of a new surgical technique for the immediate surgical reconstruction and rapid post-operative prosthodontic rehabilitation with a fixed dental prosthesis following low-level maxillectomy for malignant disease. The technique involves the use of a zygomatic oncology implant perforated micro-vascular soft tissue flap (ZIP flap) for the primary management of maxillary malignancy with surgical closure of the resultant maxillary defect and the installation of osseointegrated support for a zygomatic implant-supported maxillary fixed dental prosthesis. The use of this technique facilitates extremely rapid oral and dental rehabilitation within a few weeks of resective surgery, providing rapid return to function and restoring appearance following low-level maxillary resection, even in cases where radiotherapy is required as an adjuvant treatment post-operatively. The ZIP flap technique has been adopted as a standard procedure in the unit for the management of low-level maxillary malignancy, and this report provides a detailed step-by-step approach to treatment and discusses modifications developed over the treatment of an initial cohort of patients

    Keywords are missing: Insights from the publication keywords, abstracts and titles of an environment and human health research group

    Get PDF
    This is the final version. Available from SAGE Publications via the DOI in this record. Inequalities within academia – and the research outputs of academic – are a widely acknowledged problem. This results in the reproduction of knowledge gaps within academic praxis. The current study presents a case study from an environment and human health research group, looking at the extent to which the research outputs mirror the wider knowledge gaps in the field. We use systematic review search methods to obtain publications for an environment and health research group since 2010. We use a combination of EndNote and VosViewer to analyse the frequency of key words and concepts in the titles, abstracts and keywords of these publications. We retrieved a total of 950 publications between 2010 and 2022. We find significant gaps with respect to key concepts appearing in the titles, abstracts and keywords of publications. We find that terms such as ‘colonisation’ and ‘racism’ are not mentioned at all. We reflect on the production process of academic research with respect to reproducing blind spots within environment and human health research. We discuss our results in the context of calls to make academic research more inclusive.Natural Environment Research Council (NERC

    Non-specific binding of antibodies in immunohistochemistry: fallacies and facts

    Get PDF
    The current protocols for blocking background staining in immunohistochemistry are based on conflicting reports. Background staining is thought to occur as a result of either non-specific antibody (Ab) binding to endogenous Fc receptors (FcRs) or a combination of ionic and hydrophobic interactions. In this study, cell and tissue samples were processed according to routine protocols either with or without a blocking step (goat serum or BSA). Surprisingly, no Abs in samples processed without a blocking step showed any propensity for non-specific binding leading to background staining, implying that endogenous FcRs do not retain their ability to bind the Fc portion of Abs after standard fixation. Likewise, we did not find any non-specific Ab binding ascribable to either ionic or hydrophobic interactions. We determined that traditionally used protein blocking steps are unnecessary in the immunostaining of routinely fixed cell and tissue samples

    Phenotype MicroArray Profiling of Zymomonas mobilis ZM4

    Get PDF
    In this study, we developed a Phenotype MicroArrayâ„¢ (PM) protocol to profile cellular phenotypes in Zymomonas mobilis, which included a standard set of nearly 2,000 assays for carbon, nitrogen, phosphorus and sulfur source utilization, nutrient stimulation, pH and osmotic stresses, and chemical sensitivities with 240 inhibitory chemicals. We observed two positive assays for C-source utilization (fructose and glucose) using the PM screen, which uses redox chemistry and cell respiration as a universal reporter to profile growth phenotypes in a high-throughput 96-well plate-based format. For nitrogen metabolism, the bacterium showed a positive test results for ammonia, aspartate, asparagine, glutamate, glutamine, and peptides. Z. mobilis appeared to use a diverse array of P-sources with two exceptions being pyrophosphate and tripolyphosphate. The assays suggested that Z. mobilis uses both inorganic and organic compounds as S-sources. No stimulation by nutrients was detected; however, there was evidence of partial inhibition by purines and pyrimidines, NAD, and deferoxamine. Z. mobilis was relatively resistant to acid pH, tolerating a pH down to about 4.0. It also tolerated phosphate, sulfate, and nitrate, but was rather sensitive to chloride and nitrite. Z. mobilis showed resistance to a large number of diverse chemicals that inhibit most bacteria. The information from PM analysis provides an overview of Z. mobilis physiology and a foundation for future comparisons of other wild-type and mutant Z. mobilis strains

    Identification of plasma lipid biomarkers for prostate cancer by lipidomics and bioinformatics

    Get PDF
    Background: Lipids have critical functions in cellular energy storage, structure and signaling. Many individual lipid molecules have been associated with the evolution of prostate cancer; however, none of them has been approved to be used as a biomarker. The aim of this study is to identify lipid molecules from hundreds plasma apparent lipid species as biomarkers for diagnosis of prostate cancer. Methodology/Principal Findings: Using lipidomics, lipid profiling of 390 individual apparent lipid species was performed on 141 plasma samples from 105 patients with prostate cancer and 36 male controls. High throughput data generated from lipidomics were analyzed using bioinformatic and statistical methods. From 390 apparent lipid species, 35 species were demonstrated to have potential in differentiation of prostate cancer. Within the 35 species, 12 were identified as individual plasma lipid biomarkers for diagnosis of prostate cancer with a sensitivity above 80%, specificity above 50% and accuracy above 80%. Using top 15 of 35 potential biomarkers together increased predictive power dramatically in diagnosis of prostate cancer with a sensitivity of 93.6%, specificity of 90.1% and accuracy of 97.3%. Principal component analysis (PCA) and hierarchical clustering analysis (HCA) demonstrated that patient and control populations were visually separated by identified lipid biomarkers. RandomForest and 10-fold cross validation analyses demonstrated that the identified lipid biomarkers were able to predict unknown populations accurately, and this was not influenced by patient's age and race. Three out of 13 lipid classes, phosphatidylethanolamine (PE), ether-linked phosphatidylethanolamine (ePE) and ether-linked phosphatidylcholine (ePC) could be considered as biomarkers in diagnosis of prostate cancer. Conclusions/Significance: Using lipidomics and bioinformatic and statistical methods, we have identified a few out of hundreds plasma apparent lipid molecular species as biomarkers for diagnosis of prostate cancer with a high sensitivity, specificity and accuracy

    Low-frequency cortical activity is a neuromodulatory target that tracks recovery after stroke.

    Get PDF
    Recent work has highlighted the importance of transient low-frequency oscillatory (LFO; <4 Hz) activity in the healthy primary motor cortex during skilled upper-limb tasks. These brief bouts of oscillatory activity may establish the timing or sequencing of motor actions. Here, we show that LFOs track motor recovery post-stroke and can be a physiological target for neuromodulation. In rodents, we found that reach-related LFOs, as measured in both the local field potential and the related spiking activity, were diminished after stroke and that spontaneous recovery was closely correlated with their restoration in the perilesional cortex. Sensorimotor LFOs were also diminished in a human subject with chronic disability after stroke in contrast to two non-stroke subjects who demonstrated robust LFOs. Therapeutic delivery of electrical stimulation time-locked to the expected onset of LFOs was found to significantly improve skilled reaching in stroke animals. Together, our results suggest that restoration or modulation of cortical oscillatory dynamics is important for the recovery of upper-limb function and that they may serve as a novel target for clinical neuromodulation
    • …
    corecore